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Abstract. This study presents a framework for predicting building heating demand by integrating building
simulation with two types of time-series machine learning models, i.e., Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU). DesignBuilder is used to simulate energy performance, generating a dataset under
various operational schedules and weather conditions. Eight heating schedules are analysed to represent diverse
occupant behaviours, comfort levels, and operational settings. These simulation data are then collected to train the
LSTM and GRU models. Both models indicate strong predictive performance in capturing temporal patterns of
building heating demand. LSTM achieved R? values of 95.90% on testing data, with RMSE of 3.92%. GRU
delivered competitive results, with R? values of 93.75% on testing data, with RMSE of 4.83%. While LSTM
demonstrated superior accuracy and generalization, GRU required shorter training times, offering a trade-off
between prediction performance and computational efficiency. This study highlights the potential of combining
simulation and machine learning techniques to accurately predict building heating demand under varying scenarios.

1. Introduction

Climate problems caused by global warming are becoming increasingly critical, prompting countries to
implement measures to limit greenhouse gas emissions [1]. Building operations contribute to 36% of
global final energy consumption and 39% of energy-related greenhouse gas emissions [2]. The
emissions resulting from inefficient buildings represent a significant issue that cannot be overlooked.
Consequently, substantial research efforts have focused on improving energy efficiency in buildings,
with a particular emphasis on accurately forecasting heating and cooling energy demand. Numerous
factors influence a building’s energy demand, including its structure, materials, HVAC systems, and
occupant behaviour. Traditional forecasting methods consider all these factors and calculate a building’s
heating or cooling demand using complex heat balance principles, which is physical model. Another
widely used approach is the data-driven model, which mainly relies on historical data rather than
physical parameters.

Currently, physical models for building energy consumption calculations have become a well-
established approach, leading to the development of various simulation tools. These tools are built on
fixed physical principles, such as heat transfer, airflow, and light simulation, and are widely used for
energy analysis. Since building energy calculations involve highly complex systems, such as envelope
heat transfer, indoor airflow, and HVAC performance, and because these physical principles are already
mature and well-defined, researchers often choose to build models using existing simulation tools rather
than creating entirely new ones [3], [4]. Different tools focus on different aspects, which leads to
variations in their solving algorithms. For example, EnergyPlus is more focused on the overall thermal
balance of buildings, while TRNSYS emphasizes the flexibility of simulating individual energy module
[5]. As a result, using energy consumption predictions to refine and validate these simulation tools
remains an important area of research [6], [7]. Another research focus examines the impact of input
parameters on the predicted energy demand of physical models. The sensitivity and uncertainty of
energy consumption predictions to factors such as climate conditions, material properties, and usage
patterns are evaluated by researchers through adjustments to these inputs [8]. In addition, physical
models built on these simulation tools are widely applied for various purposes. Some are used for early-
stage energy estimation during design [9], while others are focused on predicting outcomes for
residential energy optimisation [10]. Overall, physical models are known for their high resolution and
accuracy, making them a traditional yet reliable approach. However, in practical applications, the



Proceedings of the 1% international Symposium on Al and Fluid Mechanics
Paper No S9 P2

complexity of physical characteristics often makes these models time-consuming. This challenge is
reflected both in the collection of building environmental data and in the computational time required
for simulations.

Unlike physical models, which usually take hours or days, data-driven models provide prompt
extrapolation predictions based on training data. These models learn the relationship between inputs and
outputs from historical data and adjust until the error is reduced to an acceptable level. Common models
for building energy prediction include linear regression, support vector machines (SVM), and multi-
layer perceptron (MLP) [11], [12], [13]. Linear regression assumes a linear relationship between input
and output variables, is computationally simple but has limited capability in fitting nonlinear
relationships and works best with a small number of features [14]. Regression models have low
computational costs and are suitable for simple linear and weakly nonlinear building energy predictions.
SVM handle nonlinear relationships through kernel functions and are commonly used for small-sample
predictions but have imitations in handling highly complex feature interactions [15]. MLP possesses
strong nonlinear modelling capabilities and optimises through multiple layers of neurons and weight
adjustments. Gradients are backpropagated to automatically learn complex nonlinear relationships
between input features and outputs, making MLP suitable for high-precision predictions on large-scale
complex datasets. The basic type is the backpropagation neural network (BPNN) [16], which is not well-
suited for handling time series data that are prevalent in heating demand prediction. Long Short-Term
Memory (LSTM) networks are specifically designed for time series data, enabling long and short-term
storage and utilisation of historical information, making them ideal for long-period dependencies in
building energy prediction [17]. Gated Recurrent Unit (GRU), with a simpler structure and faster
training speed, performs well in short-term time series modelling and is suitable for scenarios with
limited computational resources [18].

Although data-driven models do not have the computational burden of physics-based models, they are
highly dependent on the quality of historical data. When historical data is insufficient, achieving high-
resolution predictions becomes challenging. To handle these challenges and combine the above
complementary advantages, this study proposes a hybrid method to integrate physics-based and data-
driven models for fast, accurate and high-resolution prediction. First, a physics-based model is
developed by using building simulation software DesignBuilder. The heat demand generated by the
physics-based model is then used to train the data-driven model. Finally, the trained model is applied to
predict the building’s heating demand, and the prediction results are discussed at the end.

2. Modelling

Figure 1 Physical model in DesignBuilder
In this study, an end-terraced house in a residential area of Manchester is used as a case study. The
model constructed in DesignBuilder, based on fundamental building information, is shown in figure-1.
The house was built between 1955 and 1964, with a total area of 94 square metres, divided into two
floors. In the model, the insulation level is estimated based on the age of the building and it determines
the U-values of different part of building. They are set as follows: 1.5 W/m?K for the walls, 0.75 W/m?K
for the roof, 3.3 W/m?K for the glazing, and 0.84 W/m?K for the ground floor.
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Figure 2 Eight different heating schedule for house
In addition to building information, the model requires local meteorological data as input. Historical
weather data from 2020 is used in this study. A simplified HVAC system is implemented, where the
heating setpoint temperature is set to 18°C and the setback temperature to 12°C. The model incorporates
eight different heating schedules, as is shown in figure 2. When the indoor temperature falls below 18°C,
a value of 1 indicates that the heating system maintains the room temperature at 18°C, while a value of
0.5 signifies that the temperature is maintained at 12°C during that period.
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Figure 3 Block dlagram of LSTM in the paper

Using LSTM as an example, figure 3 illustrates the process of making predictions with LSTM model.

In this framework, the LSTM network takes three types of inputs: (1) weather data in Manchester, (2)
time series information, and (3) heating schedule. The weather data includes dry bulb temperature, wet
bulb temperature, humidity, global horizontal irradiance (GHI), direct normal irradiance (DNI), and
diffuse horizontal irradiance (DHI). The time series information consists of hour, week, and month,
which help capture temporal patterns. These inputs, along with the heating schedule, are sequentially
fed into the network to model temporal dependencies. The output of the model is the hourly heating
demand of the house. The dataset is split based on time, with the first 80% of the time series used for
training and the last 20% for testing. At each time step t, given the input x; and the previous hidden
state h;_, and memory cell C;_;, the LSTM network performs forward propagation to update the
memory cell C; and generate a new hidden state h,. Here, x, serves as the input, C; retains long-term
dependencies, and h; is the output that represents the short-term dependency and is passed to the next
layer or used for final predictions. Based on these states, the network produces the corresponding
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prediction Y;. Subsequently, the loss function L calculates the error between the predicted and actual
values. This error is backpropagated through the network to adjust the weights and bias parameters.
During this process, the optimisation algorithm Adam is employed to update the gradients iteratively,
gradually reducing the prediction error and enhancing model performance.

3. Results and analysis

The scatter plot in figure 4 presents the relationship between true values and predicted values for both
GRU (blue) and LSTM (orange) models in the testing set. The y = x reference line represents the ideal
prediction scenario where predicted values perfectly match the true values. From the distribution of data
points, it is evident that both models generally follow the reference line, indicating good predictive
performance. However, GRU exhibits a slightly wider spread of points, suggesting higher variability in
predictions. This observation aligns with the RMSE values, where LSTM achieves a lower RMSE of
3.92%, while GRU has a slightly higher RMSE of 4.83%. Despite this, GRU demonstrates a higher R?
value of 0.9342, indicating a stronger overall correlation between predicted and true values compared
to LSTM, which has an R? of 0.8965.
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Figure 4 Regression results of the testing set for both LSTM and GRU
Figure 5 provides a detailed comparison of the prediction results of GRU and LSTM, illustrating the
daily total heating demand alongside the true values. The top plot represents the GRU predictions, while
the bottom plot shows the LSTM predictions. GRU’s predictions closely follow the true values,
particularly during peak demand periods. It slightly underestimates some of the highest peaks and
exhibits more fluctuations during lower-demand periods. Conversely, LSTM also tracks the true demand
well but produces smoother predictions. It sometimes overestimates certain peaks but maintains a more

stable trend throughout the time series. Overall, both models demonstrate strong predictive capabilities.
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Figure 5 Total daily demand comparisons of test set for both LSTM and GRU
To further analyse the models’ ability, Fig. 6 compares the hourly average heating and cooling demand
in the training and test sets. The x-axis represents the hour of the day, while the y-axis indicates the
average demand across all days. The top plot displays the hourly heating demand in the training set,
while the bottom plot presents the hourly cooling demand in the test set. Each curve represents the true
values (blue), GRU predictions (orange), and LSTM predictions (green). One key observation is that
despite differences in demand profile between the training and test sets, both models effectively capture
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the overall trend. GRU and LSTM successfully align with the general demand patterns, indicating that
they have effectively learned the underlying structure rather than simply memorising the training data.
Although minor deviations occur, particularly near demand peaks, both models demonstrate strong
predictive capabilities, closely following the true values. This suggests that the models are capable of
adapting to variations in the test data while maintaining accurate demand predictions.
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Figure 6 Average hourly heating demand comparisons between for both training and testing
Sensitivity analysis is crucial in machine learning and modelling because it helps to identify which input
variables have the most significant impact on the model’s predictions. Fig. 7 presents the Sobol
Sensitivity Analysis results. Among all features, heating schedule has the highest sensitivity index
(1.001), making it the most influential factor in the model. Hour also shows a high sensitivity index
(0.239), indicating its significant role in shaping demand profile. It highlights the strong influence of
time-dependent factors on the model’s predictions. Both factors are directly determined by human
decisions and are closely linked to user habits and preferences, as heating schedules are typically set
based on occupancy patterns and daily routines. Meanwhile, wet bulb temperature (0.270) and direct
normal irradiance (DNI) (0.218) are also higher the average sensitivity threshold, indicating the
substantial contribution of meteorological factors. Wet bulb temperature, which reflects both
temperature and humidity, strongly influences heating demand, while DNI, representing direct solar
radiation, affects heat gains and losses in buildings. These findings confirm that both meteorological
conditions and time-related factors significantly impact the predictions, emphasising the interplay
between external climate variables and temporal heating demand patterns.
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Figure 7 Sobol sensitivity analysis for prediction model

4. Conclusion
This study develops a framework that integrates a physical model with deep neural networks to predict
building heating demand. Using a single building as a case study, different heating schedules are input
to generate various heating demand profiles. The hourly data generated is then fed into LSTM and GRU
models for training.
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The results show that both models are able to accurately capture daily heating demand trends, closely
following the true values. Even when the test data curve differs from the training data, both models
successfully approximate the true hourly demand distribution on average. Additionally, sensitivity
analysis highlights the critical impact of occupant behaviours and external weather conditions on heating
demand. These findings confirm that both LSTM and GRU can effectively adapt to variations in heating
demand. In future research, greater attention should be given to the impact of highly sensitive parameters
on model performance to further enhance predictive accuracy.
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