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Abstract. This study presents a framework for predicting building heating demand by integrating building 

simulation with two types of time-series machine learning models, i.e., Long Short-Term Memory (LSTM) and 

Gated Recurrent Units (GRU). DesignBuilder is used to simulate energy performance, generating a dataset under 

various operational schedules and weather conditions. Eight heating schedules are analysed to represent diverse 

occupant behaviours, comfort levels, and operational settings. These simulation data are then collected to train the 

LSTM and GRU models. Both models indicate strong predictive performance in capturing temporal patterns of 

building heating demand. LSTM achieved R² values of 95.90% on testing data, with RMSE of 3.92%. GRU 

delivered competitive results, with R² values of 93.75% on testing data, with RMSE of 4.83%. While LSTM 

demonstrated superior accuracy and generalization, GRU required shorter training times, offering a trade-off 

between prediction performance and computational efficiency. This study highlights the potential of combining 

simulation and machine learning techniques to accurately predict building heating demand under varying scenarios. 

 

1. Introduction 

Climate problems caused by global warming are becoming increasingly critical, prompting countries to 

implement measures to limit greenhouse gas emissions [1]. Building operations contribute to 36% of 

global final energy consumption and 39% of energy-related greenhouse gas emissions [2]. The 

emissions resulting from inefficient buildings represent a significant issue that cannot be overlooked. 

Consequently, substantial research efforts have focused on improving energy efficiency in buildings, 

with a particular emphasis on accurately forecasting heating and cooling energy demand. Numerous 

factors influence a building’s energy demand, including its structure, materials, HVAC systems, and 

occupant behaviour. Traditional forecasting methods consider all these factors and calculate a building’s 

heating or cooling demand using complex heat balance principles, which is physical model. Another 

widely used approach is the data-driven model, which mainly relies on historical data rather than 

physical parameters.  

Currently, physical models for building energy consumption calculations have become a well-

established approach, leading to the development of various simulation tools. These tools are built on 

fixed physical principles, such as heat transfer, airflow, and light simulation, and are widely used for 

energy analysis. Since building energy calculations involve highly complex systems, such as envelope 

heat transfer, indoor airflow, and HVAC performance, and because these physical principles are already 

mature and well-defined, researchers often choose to build models using existing simulation tools rather 

than creating entirely new ones [3], [4]. Different tools focus on different aspects, which leads to 

variations in their solving algorithms. For example, EnergyPlus is more focused on the overall thermal 

balance of buildings, while TRNSYS emphasizes the flexibility of simulating individual energy module 

[5]. As a result, using energy consumption predictions to refine and validate these simulation tools 

remains an important area of research [6], [7]. Another research focus examines the impact of input 

parameters on the predicted energy demand of physical models. The sensitivity and uncertainty of 

energy consumption predictions to factors such as climate conditions, material properties, and usage 

patterns are evaluated by researchers through adjustments to these inputs [8]. In addition, physical 

models built on these simulation tools are widely applied for various purposes. Some are used for early-

stage energy estimation during design [9], while others are focused on predicting outcomes for 

residential energy optimisation [10]. Overall, physical models are known for their high resolution and 

accuracy, making them a traditional yet reliable approach. However, in practical applications, the 
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complexity of physical characteristics often makes these models time-consuming. This challenge is 

reflected both in the collection of building environmental data and in the computational time required 

for simulations. 

Unlike physical models, which usually take hours or days, data-driven models provide prompt 

extrapolation predictions based on training data. These models learn the relationship between inputs and 

outputs from historical data and adjust until the error is reduced to an acceptable level. Common models 

for building energy prediction include linear regression, support vector machines (SVM), and multi-

layer perceptron (MLP) [11], [12],  [13]. Linear regression assumes a linear relationship between input 

and output variables, is computationally simple but has limited capability in fitting nonlinear 

relationships and works best with a small number of features [14]. Regression models have low 

computational costs and are suitable for simple linear and weakly nonlinear building energy predictions. 

SVM handle nonlinear relationships through kernel functions and are commonly used for small-sample 

predictions but have imitations in handling highly complex feature interactions [15]. MLP possesses 

strong nonlinear modelling capabilities and optimises through multiple layers of neurons and weight 

adjustments. Gradients are backpropagated to automatically learn complex nonlinear relationships 

between input features and outputs, making MLP suitable for high-precision predictions on large-scale 

complex datasets. The basic type is the backpropagation neural network (BPNN) [16], which is not well-

suited for handling time series data that are prevalent in heating demand prediction. Long Short-Term 

Memory (LSTM) networks are specifically designed for time series data, enabling long and short-term 

storage and utilisation of historical information, making them ideal for long-period dependencies in 

building energy prediction [17]. Gated Recurrent Unit (GRU), with a simpler structure and faster 

training speed, performs well in short-term time series modelling and is suitable for scenarios with 

limited computational resources [18]. 

Although data-driven models do not have the computational burden of physics-based models, they are 

highly dependent on the quality of historical data. When historical data is insufficient, achieving high-

resolution predictions becomes challenging. To handle these challenges and combine the above 

complementary advantages, this study proposes a hybrid method to integrate physics-based and data-

driven models for fast, accurate and high-resolution prediction. First, a physics-based model is 

developed by using building simulation software DesignBuilder. The heat demand generated by the 

physics-based model is then used to train the data-driven model. Finally, the trained model is applied to 

predict the building’s heating demand, and the prediction results are discussed at the end. 

2. Modelling 

 

 

 

 

 

 

 

 

 

Figure 1 Physical model in DesignBuilder 

In this study, an end-terraced house in a residential area of Manchester is used as a case study. The 

model constructed in DesignBuilder, based on fundamental building information, is shown in figure-1. 

The house was built between 1955 and 1964, with a total area of 94 square metres, divided into two 

floors. In the model, the insulation level is estimated based on the age of the building and it determines 

the U-values of different part of building. They are set as follows: 1.5 W/m²K for the walls, 0.75 W/m²K 

for the roof, 3.3 W/m²K for the glazing, and 0.84 W/m²K for the ground floor.  
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Figure 2 Eight different heating schedule for house 

In addition to building information, the model requires local meteorological data as input. Historical 

weather data from 2020 is used in this study. A simplified HVAC system is implemented, where the 

heating setpoint temperature is set to 18°C and the setback temperature to 12°C. The model incorporates 

eight different heating schedules, as is shown in figure 2. When the indoor temperature falls below 18°C, 

a value of 1 indicates that the heating system maintains the room temperature at 18°C, while a value of 

0.5 signifies that the temperature is maintained at 12°C during that period. 

  
Figure 3 Block diagram of LSTM in the paper  

Using LSTM as an example, figure 3 illustrates the process of making predictions with LSTM model.  

In this framework, the LSTM network takes three types of inputs: (1) weather data in Manchester, (2) 

time series information, and (3) heating schedule. The weather data includes dry bulb temperature, wet 

bulb temperature, humidity, global horizontal irradiance (GHI), direct normal irradiance (DNI), and 

diffuse horizontal irradiance (DHI). The time series information consists of hour, week, and month, 

which help capture temporal patterns. These inputs, along with the heating schedule, are sequentially 

fed into the network to model temporal dependencies. The output of the model is the hourly heating 

demand of the house. The dataset is split based on time, with the first 80% of the time series used for 

training and the last 20% for testing. At each time step 𝑡, given the input 𝑥𝑡 and the previous hidden 

state ℎ𝑡−1  and memory cell 𝐶𝑡−1 , the LSTM network performs forward propagation to update the 

memory cell 𝐶𝑡 and generate a new hidden state ℎ𝑡. Here, 𝑥𝑡 serves as the input, 𝐶𝑡 retains long-term 

dependencies, and ℎ𝑡 is the output that represents the short-term dependency and is passed to the next 

layer or used for final predictions. Based on these states, the network produces the corresponding 
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prediction 𝑌𝑡. Subsequently, the loss function 𝐿 calculates the error between the predicted and actual 

values. This error is backpropagated through the network to adjust the weights and bias parameters. 

During this process, the optimisation algorithm Adam is employed to update the gradients iteratively, 

gradually reducing the prediction error and enhancing model performance.  

3. Results and analysis 
The scatter plot in figure 4 presents the relationship between true values and predicted values for both 

GRU (blue) and LSTM (orange) models in the testing set. The y = x reference line represents the ideal 

prediction scenario where predicted values perfectly match the true values. From the distribution of data 

points, it is evident that both models generally follow the reference line, indicating good predictive 

performance. However, GRU exhibits a slightly wider spread of points, suggesting higher variability in 

predictions. This observation aligns with the RMSE values, where LSTM achieves a lower RMSE of 

3.92%, while GRU has a slightly higher RMSE of 4.83%. Despite this, GRU demonstrates a higher R² 

value of 0.9342, indicating a stronger overall correlation between predicted and true values compared 

to LSTM, which has an R² of 0.8965. 

 
Figure 4 Regression results of the testing set for both LSTM and GRU  

Figure 5 provides a detailed comparison of the prediction results of GRU and LSTM, illustrating the 

daily total heating demand alongside the true values. The top plot represents the GRU predictions, while 

the bottom plot shows the LSTM predictions. GRU’s predictions closely follow the true values, 

particularly during peak demand periods. It slightly underestimates some of the highest peaks and 

exhibits more fluctuations during lower-demand periods. Conversely, LSTM also tracks the true demand 

well but produces smoother predictions. It sometimes overestimates certain peaks but maintains a more 

stable trend throughout the time series. Overall, both models demonstrate strong predictive capabilities.  

 
Figure 5 Total daily demand comparisons of test set for both LSTM and GRU 

To further analyse the models’ ability, Fig. 6 compares the hourly average heating and cooling demand 

in the training and test sets. The x-axis represents the hour of the day, while the y-axis indicates the 

average demand across all days. The top plot displays the hourly heating demand in the training set, 

while the bottom plot presents the hourly cooling demand in the test set. Each curve represents the true 

values (blue), GRU predictions (orange), and LSTM predictions (green). One key observation is that 

despite differences in demand profile between the training and test sets, both models effectively capture 
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the overall trend. GRU and LSTM successfully align with the general demand patterns, indicating that 

they have effectively learned the underlying structure rather than simply memorising the training data. 

Although minor deviations occur, particularly near demand peaks, both models demonstrate strong 

predictive capabilities, closely following the true values. This suggests that the models are capable of 

adapting to variations in the test data while maintaining accurate demand predictions. 

 
Figure 6 Average hourly heating demand comparisons between for both training and testing 

Sensitivity analysis is crucial in machine learning and modelling because it helps to identify which input 

variables have the most significant impact on the model’s predictions. Fig. 7 presents the Sobol 

Sensitivity Analysis results. Among all features, heating schedule has the highest sensitivity index 

(1.001), making it the most influential factor in the model. Hour also shows a high sensitivity index 

(0.239), indicating its significant role in shaping demand profile. It highlights the strong influence of 

time-dependent factors on the model’s predictions. Both factors are directly determined by human 

decisions and are closely linked to user habits and preferences, as heating schedules are typically set 

based on occupancy patterns and daily routines. Meanwhile, wet bulb temperature (0.270) and direct 

normal irradiance (DNI) (0.218) are also higher the average sensitivity threshold, indicating the 

substantial contribution of meteorological factors. Wet bulb temperature, which reflects both 

temperature and humidity, strongly influences heating demand, while DNI, representing direct solar 

radiation, affects heat gains and losses in buildings. These findings confirm that both meteorological 

conditions and time-related factors significantly impact the predictions, emphasising the interplay 

between external climate variables and temporal heating demand patterns. 

 
Figure 7 Sobol sensitivity analysis for prediction model 

4. Conclusion  
This study develops a framework that integrates a physical model with deep neural networks to predict 

building heating demand. Using a single building as a case study, different heating schedules are input 

to generate various heating demand profiles. The hourly data generated is then fed into LSTM and GRU 

models for training. 
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The results show that both models are able to accurately capture daily heating demand trends, closely 

following the true values. Even when the test data curve differs from the training data, both models 

successfully approximate the true hourly demand distribution on average. Additionally, sensitivity 

analysis highlights the critical impact of occupant behaviours and external weather conditions on heating 

demand. These findings confirm that both LSTM and GRU can effectively adapt to variations in heating 

demand. In future research, greater attention should be given to the impact of highly sensitive parameters 

on model performance to further enhance predictive accuracy. 
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