
Proceedings of the 1st international Symposium on AI and Fluid Mechanics 

Paper No S7 P4 

 

 

Sensitivity and uncertainty analyses in deep-learning- 

augmented unsteady Reynolds-averaged Navier–Stokes 

turbulence modelling for particle-laden jet flows 

 
X Zhang1*, Z Zhang2, Z Sun1, J Q Shi2, G J Nathan1 and R C Chin1

 

1 Centre for Energy Technology, School of Electrical and Mechanical Engineering, The University of 

Adelaide, Adelaide, SA 5005, Australia 

2 Australian Institute for Machine Learning, The University of Adelaide, Adelaide, SA 5005, 

Australia 

 

Keywords: Particle-laden flows; turbulence modelling; URANS; deep learning; prediction uncertainty. 

 

Abstract. Building upon our previously developed deep learning (DL)-augmented framework for turbulence 

modelling in unsteady Reynolds-averaged Navier–Stokes (URANS) simulations of particle-laden flows, this study 

presents a comprehensive evaluation to enhance model efficiency and interpretability. The original framework 

integrated a deep neural network (DNN) into the Euler–Lagrangian gas–solid flow system to predict turbulent 

eddy viscosity fields based on instantaneous flow and particle features. During training, the DNN was trained 

using an existing high-fidelity direct numerical simulation database of four sets of mono-disperse particle-laden 

jet flows. In prediction, the trained DNN predicted and updated the closure term (eddy viscosity) every time step 

to solve the URANS equations and particle motion equations. This framework demonstrated significant 

improvements in predicting mean particle velocity and concentration distributions in jet flows compared to 

baseline URANS simulations using the standard realisable k–ϵ turbulence model. This study focuses on two aspects 

to refine the framework further: 1) conducting a sensitivity analysis of input features to identify their influence on 

the trained model, enabling potential model simplifications while retaining accuracy; and 2) evaluating prediction 

uncertainties resulting from variability in input features. These analyses examine how changes in critical input 

features propagate through the model and impact prediction fidelity, providing practical insights into the 

application of the framework to complex multiphase flow simulations. 

 
 

Introduction 

Machine learning (ML)-augmented computational fluid dynamics (CFD) models have gained 

significant attention in recent years due to their potential to enhance predictive accuracy while 

maintaining computational efficiency. Traditional Reynolds-averaged Navier–Stokes (RANS) 

simulations, although widely used in industry, are inherently limited by turbulence closure assumptions. 

High-fidelity simulations such as direct numerical simulations (DNS) and large-eddy simulations (LES) 

provide more accurate predictions but remain computationally expensive. Consequently, ML has been 

explored as a tool to enhance RANS predictions in a data-driven manner by leveraging high-fidelity 

data to train turbulence modelling [1-3]. However, despite these advancements, challenges persist 

regarding the robustness, interpretability, and reliability of ML-based CFD models. 

Existing ML–CFD models suffer from generalisation issues as they are trained on specific flow 

conditions and exhibit low generality when applied to other cases. This is particularly evident in data- 

driven turbulence modelling, where models trained on high-fidelity DNS or LES data may exhibit poor 

performance when applied to industrial-scale simulations with different Reynolds numbers or geometric 

complexities [4]. The lack of interpretability further exacerbates this issue, as most ML models function 

as black-box approximators, making it difficult to assess the physical relevance of learned 

representations. 

Another critical limitation is uncertainty propagation within ML–CFD models. While traditional CFD 

solvers incorporate well-defined numerical schemes to manage error sources, the ML–CFD frameworks 
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introduce additional uncertainties stemming from the choice of training data, model architecture, and 

feature selection [5]. In particular, ML-based turbulence models may amplify small errors in the input 

variables, leading to cascading inaccuracies in downstream predictions [6]. Therefore, despite growing 

interest in ML-augmented CFD frameworks, systematic quantification and mitigation of uncertainties 

inherent to data-driven ML–CFD models remain underdeveloped. Existing studies have primarily 

focused on improving prediction accuracy, while the propagation of uncertainties across the ML–CFD 

workflow (from training data deficiencies to model generalisation) has received limited attention [7]. 

Furthermore, the sensitivity of ML models to input features remains an open research area. Many ML– 

CFD frameworks employ high-dimensional input spaces, including flow statistics [3], turbulence 

metrics [8], and geometric features [9]. However, not all features contribute equally to prediction 

accuracy, and redundant inputs may introduce noise that degrades model performance. Identifying the 

most influential features through sensitivity analysis is essential to improve model robustness, optimise 

computational efficiency and reduce reliance on unnecessary data sources. 

In light of these research gaps, the present study is designed to evaluate our previously developed ML– 

CFD framework [3] through the assessment of input feature sensitivity and uncertainty propagation. An 

𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 assessment was performed to quantify the impact of various combinations of key input features 

on training performance. Subsequently, 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 uncertainty analysis was carried out on the 

simulation predictions generated by the ML–CFD model. By systematically examining how variations 

in critical input features affect the simulation predictions, a deeper understanding of feature selection is 

gained of how the ML–CFD model responds to varying flow conditions, thereby enhancing its 

robustness for practical engineering applications. 

 
Methodology 

In this study, as in our previous work [3], a three-dimensional, round, turbulent co-flow jet was selected 

as the representative flow scenario. The numerical configurations, methods, and algorithms for the 

unsteady Reynolds-averaged Navier–Stokes (URANS) simulations, as well as the deep learning (DL)– 

URANS framework, were maintained as detailed by Zhang et al. [3]. The DL–URANS framework was 

designed to train a deep neural network (DNN) model using high-fidelity DNS data from Zhang et al. 

[10] and integrate it into the URANS simulation to predict turbulent eddy viscosity dynamically, thereby 

improving simulation accuracy. Building upon this established setup, the current study performed two 

complementary analyses: a sensitivity evaluation to the selection of input features and an uncertainty 

propagation assessment of the simulation predictions. 

For the sensitivity study, the same training dataset as Zhang et al. [3] was employed. This dataset 

comprised 320 sets of instantaneous DNS data fields, encompassing both non-particle-laden and a 

series of mono-disperse particle-laden flows (with Stokes numbers characterising the particle-to-fluid 

response time ratio of 𝑆𝑘 = 0.3, 1.4, and 11.2). Note that the particle-to-fluid density ratio and mass 

flux (i.e., mass loading) were fixed at 1000 and 0.4, respectively, for the particle-laden flows. Within 

this dataset, different combinations were created by systematically omitting one of the key input features 

during training. The 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 training performance was quantified—using changes in the mean square 

error—as compared to the performance achieved when all key input features, as used by Zhang et al. 

[3], were included. The specific training models are summarised in Table 1. This process was intended 

to identify the most influential input features of the DL–URANS model and to refine feature selection. 

For the uncertainty propagation assessment, the flow case examined was one of the particle-laden jets 

from Zhang et al. [3] with a Stokes number of 𝑆𝑘 = 0.3. The 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 evaluation followed the 

methodology described by Zhang et al. [3] by comparing the DL–URANS simulation predictions with 

high-fidelity DNS results reported by Zhang et al. [10]. Statistical metrics—including error variances 

and confidence intervals—were computed to quantify the uncertainty in the predicted turbulent eddy 
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viscosity fields and other related flow statistics. This comparison was designed to assess how variability 

in the input features was reflected in the simulation outputs and to provide insights into the model’s 

performance under varying flow conditions. 
 

Table 1. List of cases and corresponding trained model expressions employed in the sensitivity analysis of input 
features. Here, the local-averaged values in each computational cell of the fluid velocity gradient 𝛻 𝒖̃𝑓  , cell size 

properties 𝛥, fluid velocity 𝒖̃𝑓 ,  particle source term 𝑺̃𝑝 ,  fluid vorticity 𝛻 × 𝒖̃𝑓 ,  pressure gradient 𝛻𝑝̃, pressure 𝑝̃, 

particle volume fraction 𝛼̃̃𝑝, particle number density 𝑁̃𝑝 ,  Kolmogorov Stokes number 𝑆𝑘̃𝜂 and particle mass 

loading 𝛷̃𝑝  are training input features, the local-averaged turbulent eddy viscosity 𝜈̃̃𝑡 is the training target. 
 

Case Trained model expression Note 

Case–0 𝑓(∇𝐮̃𝑓 , 𝛥, 𝐮̃𝑓  , 𝐒̃̃𝑝, ∇ × 𝐮̃𝑓 , ∇𝑝̃, 𝑝̃, 𝛼̃̃𝑝, 𝑁̃𝑝 , 𝑆̃𝑘𝜂 , 𝛷̃𝑝) → 𝜈̃̃𝑡 employed by Zhang et al. [3] 

Case– 𝑁̃𝑝  𝑓(∇𝐮̃𝑓 , Δ, 𝐮̃𝑓 , 𝐒̃̃𝑝, ∇ × 𝐮̃𝑓  , ∇𝑝̃, 𝑝̃, 𝛼̃̃𝑝, 𝑆̃𝑘𝜂 , 𝛷̃𝑝 ) → 𝜈̃̃𝑡 omitted 𝑁̃𝑝  (weight of 1.6% [3]) 

Case–∇ × 𝐮̃𝑓  𝑓(∇𝐮̃𝑓, Δ, 𝐮̃𝑓 , 𝐒̃̃𝑝, ∇𝑝̃, 𝑝̃, 𝛼̃̃𝑝, 𝑁̃𝑝 , 𝑆̃𝑘𝜂 , 𝛷̃𝑝) → 𝜈̃̃𝑡 omitted ∇ × 𝐮̃𝑓  (weight of 7.1% [3]) 

Case–𝑆̃𝑝 𝑓(∇𝐮̃𝑓 , Δ, 𝐮̃𝑓 , ∇ × 𝐮̃𝑓 , ∇𝑝̃, 𝑝̃, 𝛼̃̃𝑝, 𝑁̃𝑝 , 𝑆̃𝑘𝜂 ,  𝛷̃𝑝) → 𝜈̃̃𝑡 omitted 𝑆𝑝̃ (weight of 8.4% [3]) 

Case– 𝐮̃𝑓  𝑓(∇𝐮̃𝑓, Δ, 𝐒̃̃𝑝, ∇ × 𝐮̃𝑓 , ∇𝑝̃, 𝑝̃, 𝛼̃̃𝑝, 𝑁̃𝑝 , 𝑆̃𝑘𝜂 ,  𝛷̃𝑝) → 𝜈̃̃𝑡 omitted 𝐮̃𝑓  (weight of 9.9% [3]) 

Case–∇𝐮̃𝑓  𝑓(Δ, 𝐮̃𝑓 , 𝐒̃̃𝑝, ∇ × 𝐮̃𝑓 , ∇𝑝̃, 𝑝̃, 𝛼̃̃𝑝, 𝑁̃𝑝 , 𝑆̃𝑘𝜂 , 𝛷̃𝑝) → 𝜈̃̃𝑡 omitted ∇ 𝐮̃𝑓  (weight of 32.9% [3]) 

 

Results 

Figure 1 presents the evolution of the mean-square-error (MSE) to represent the model training 
performance during the training process of the DNN model under different cases in Table 1. It can be 

seen that Case–𝑁̃𝑝 , which omitted the input feature of particle number density in each computational 

cell 𝑁̃𝑝  from the training data set, exhibits a very close MSE profile to the reference Case–0 (the training 

case employed by Zhang et al. [3]). This can be explained by the low weight of input feature 𝑁̃𝑝 ,  which 

accounts for 1.6% during training. Such a low weight is associated with an insufficient representation 
of the particle phase in the training dataset. As noted above, although particle-laden flows with various 
particle Stokes numbers were used, the density ratio and mass loading remained constant. Moreover, the 

training target 𝜈̃̃𝑡 is not directly related to 𝑁̃𝑝 ;  they are only connected through the particle source term 

𝑆𝑝 in the Navier-Stokes equation (see Equation 2 in the paper by Zhang et al. [3]). As the weight of the 

omitted input feature increases sequentially (see Table 1), the MSE profiles deviate progressively further 

 

Figure 1. Sensitivity study of the mean square error (MSE) evolution in the training process for cases omitting 

various input features (see Table 1). 
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from that of Case–0. A notable transition is observed in Case– ̃𝐮𝑓 , where the fluid velocity was omitted, 

its MSE value remains relatively high (approximately 0.2) after 250 epochs and continues to decrease, 
suggesting that the training process may have been over-fitting. Although the omitted fluid velocity ̃𝐮 𝑓  

represents 9.9% of the total weight, which is slightly higher than the 8.4% weight of the omitted particle 

source term 𝑆̃𝑝 in Case–𝑆̃𝑝, its impact on training performance increases non-linearly. Furthermore, in 

Case–∇̃𝐮𝑓 , which omitted the fluid velocity gradient with a weight of 32.9%, the MSE value remained 

around 0.9 without any reduction, indicating that the training failed. 

Figure 2 presents the instantaneous predictions of the turbulent eddy viscosity, fluid, and particle 

velocity fields for different cases as an 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 evaluation of the DL–URANS model. 

Qualitatively, it is clear that the discrepancy between the predictions of the DL–URANS case from left 

to right and the DNS results reported in Zhang et al. [10] becomes increasingly apparent. In particular, 

the predicted turbulent eddy viscosity values tend to increase, while the decay and spread of both fluid 

and particle velocities become progressively less pronounced. 
 

 
Figure 2. Representative instantaneous images of (a) the turbulent eddy viscosity field, (b) the fluid velocity 

field, and (c) the particle velocity field in the downstream jet domain for different DL–URANS cases (see Table 

1) and the DNS [10]. 
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Table 2 summarises the mean relative errors of the quantitative statistics compared to the DNS results 

[10], which include the mean centerline evolution of the axial velocity and the half-width of the mean 

axial velocity for both the fluid and particle phases. The error 𝐸 was computed following the 

methodology outlined in Zhang et al. [3]. Combining the information from this table and Figure 1, it can 

be found that the error 𝐸 increases with the rise in the MSE during training. In other words, worse 

performance in the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 training process is monotonically associated with more significant 

discrepancies in the 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 simulation predictions for both fluid and particle phases. 
 

Table 2. Averaged relative error 𝐸 of the DL–URANS predictions for the fluid or particle statistics from 

different cases (see Table 1) with respect to the previous DNS data [10]. 
 

Fluid or particle statistic Case–0 Case– 𝑁̃𝑝  Case–∇ × 𝐮̃𝑓  Case– 𝐮̃𝑓  

Centreline evolution of mean axial fluid velocity 𝑈𝑓,𝑥−𝑐−𝑒 2.1% 3.5% 17.3% 43.3% 

Half-width of mean axial fluid velocity 𝑅0.5𝑈𝑓,𝑥−𝑐 8.9% 8.1% 12.2% 24.8% 

Centreline evolution of mean axial particle velocity 𝑈𝑝,𝑥−𝑐−𝑒 2.9% 4.5% 14.2% 67.1% 

Half-width of mean axial particle velocity 𝑅0.5𝑈𝑝,𝑥−𝑐 4.8% 5.2% 16.6% 55.4% 

 
Figure 3 compares the radial distribution of turbulent eddy viscosity 𝜈̃𝑡 in the jet downstream location 

at 𝑥/𝐷 = 20 between the DL–URANS cases and the DNS training dataset [10]. Figure 3(a) shows that 
the mean 𝜈̃𝑡 profile predicted by Case–0 is comparable to the DNS data, peaking at 𝑟/𝐷 ≈ 0.4 before 

gradually decreasing. However, a secondary peak at 𝑟/𝐷 ≈ 2.5 is observed in Case–0 but not in the 
DNS, which is also evident in the joint probability distribution function (PDF) of 𝜈̃𝑡 values and radial 

positions in Figure 3(c). This discrepancy may result from large data variability at the jet boundary, 
particularly in regions with steep velocity gradients, which the training model did not fully capture. 
Further investigation is needed to confirm this hypothesis. Apart from this, the PDF prediction of 𝜈̃𝑡 

shows the same trend with the DNS, with values concentrated at 𝜈̃𝑡 ≤ 0.001 and smaller 𝑟/𝐷 , 

explaining the overall agreement in the mean 𝜈̃𝑡 profile. In contrast, Case– ̃𝐮 𝑓  exhibits significant 

deviations from the DNS, directly corresponding to its poor training performance (see Figure 1, where 
its MSE remains at 0.2). 

 

Figure 3. Radial distributions of the turbulent eddy viscosity 𝜈̃𝑡 in the jet downstream domain at 𝑥/𝐷 = 20, 

comparing (a) mean 𝜈̃𝑡 profiles for different DL–URANS cases and the DNS training dataset, as well as the joint 
probability distribution function (PDF) of 𝜈̃𝑡 values and their radial positions in (b) the previous DNS [10], (c) 

Case–0, and (d) Case–𝑢̃𝑓 . 

 
Conclusion 

This study provides insight into the nonlinear influence of input feature weighting on training 

performance. While it is confirmed that lower-weighted particle-related features (e.g., particle number 
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density and source term) have a weaker impact compared to higher-weighted fluid-related features (e.g., 

fluid velocity gradients), our findings reveal an intricate, nonlinear relationship that requires further 

quantitative investigation. 

The consistently low weighting of particle-related features suggests an insufficient representation of the 

particle phase in the training dataset. Enhancing model performance may require incorporating a broader 

range of particle-laden flows into the training dataset (e.g., with varied mass loadings and density ratios) 

and/or treating particle-related parameters (e.g., particle source term) as an additional training target. 

Furthermore, it is worth noting that the 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 evaluation shows that turbulent eddy viscosity is 

less accurately predicted near the jet boundary with high velocity gradients. This prediction bias is not 

evident from the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 training performance, despite the common assumption that a reduction in 𝑎 
𝑝𝑟𝑖𝑜𝑟𝑖 training performance directly translates into increased 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 simulation errors. This 

highlights the need for further refinement to enhance model generalisation in high-shear regions, 

possibly by incorporating localised flow characteristics into the training process or employing more 

adaptive learning strategies. 
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