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Abstract This study introduces a data-driven approach for the tuning of a model capable of identifying the loss 

sources characterizing different Low Pressure Turbine (LPT) blade geometries. The method involves two main 

steps: first, Proper Orthogonal Decomposition (POD) is applied to Large Eddy Simulations (LES) of turbine cas- 

cades to analyze local entropy production and separate the contribution of coherent flow structures to turbulent 

kinetic energy. Then, the results of the spatial and modal characterization of losses are used to train a model that 

predicts loss trends based on blade geometry. The process involves decomposing blade shapes and loss distribu- 

tions into modes and coefficients, allowing for a low-dimensional representation of both predictors and targeted 

functions. This enables the creation of an efficient model that correlates the compressed representation of geometry 

and loss distributions to optimize blade shapes while minimizing overfitting. The application of the POD encoder 

demonstrates that, despite the simplicity of the model and the limited data available, it provides significant results 

and allows for an easy interrogation of the profile geometry’s design space, thus enabling the identification of the 

geometric parameters that influence loss mechanisms in different regions of the examined domain. 

 
1. Introduction 

The design of Low-Pressure Turbine (LPT) blades has long played a crucial role in the pursuit of im- 

proved performance in modern turbomachinery for air propulsion, as their operation profoundly influ- 

ences overall engine efficiency and fuel consumption. Despite decades of research, the complete under- 

standing of loss mechanisms associated with LPT blade geometries remains challenging due to the com- 

plex, unsteady nature of the flow fields involved, which depend on a variety of geometric and operational 

parameters. Recent advances in computational fluid dynamics, particularly the increasing availability of 

high-fidelity data from Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS), have 

provided unprecedented insights into the detailed dynamics of loss generation mechanisms [1, 2, 3, 4]. 

However, this type of analysis still represents a significant cost at the industrial level, making it a tool 

that cannot always be systematically employed. 

 
In recent years, machine learning has emerged as a promising approach to the optimization of turbo- 

machinery components, enabling a more efficient allocation of economic and computational resources. 

It allows identifying more efficient development paths, from the preliminary design of new profiles to 

final testing [5]. In the scope of design optimization, autoencoders have emerged as a particularly ef- 

fective technique for compressing and synthesizing high-dimensional information. Autoencoders are 

artificial neural networks designed to learn compact latent representations of data, allowing for the ex- 
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traction of essential features for further analysis [6]. In their simplest and most straightforward version, 

they are usually referred to as linear autoencoders, which rely on simple linear transformations, effec- 

tively performing a principal component analysis-like decomposition in a neural network framework. 

Linear autoencoders are computationally efficient and inherently robust in cases where limited data are 

available. In such scenarios, their ability to extract meaningful low-dimensional representations without 

requiring extensive and computationally expensive training data makes them particularly valuable. 

 
Among these, Proper Orthogonal Decomposition (POD) has emerged as a powerful tool for analyzing 

and simplifying large and complex datasets. Originally introduced by Lumley in 1967 [7], POD can be 

used for the decomposition of turbulent flow fields into spatial and temporal modes, identifying the 

dominant coherent structures contributing to loss production. In the context of turbomachinery, POD 

has been successfully applied to isolate key loss mechanisms, attributing them to specific regions within 

the examined domain, and guide the optimization of blade geometries [8, 9, 10, 11]. As reported in 

[12, 13, 14], an orthogonal basis, such as the one spanned by POD modes, can also be effectively used 

to efficiently parameterize the geometry of blade profiles. The advantage of POD lies in generating a 

decomposition basis that maximizes the projection of the dataset onto it, allowing for the dimensionality 

reduction of the parameter space. 

 
Building on this foundation, this paper presents a novel application of POD as a linear autoencoder 

framework for predicting profile losses in LPT cascades, starting from a limited set of high-fidelity 

simulations performed on different blade geometries. By leveraging POD properties, we can extract a 

low-dimensional latent space that efficiently captures the essential geometric variations and their corre- 

sponding impact on losses. Then, a functional relationship can be established between the reduced set of 

geometry descriptors and the reduced set of parameters representing the localization and intensity of loss 

mechanisms across sub-regions of the examined domain, such as boundary layers, wake, and passage 

region. 

 
2. LES Database 

The present study relies on Large Eddy Simulations (LES) conducted on six different LPT blades using 

the commercial solver STAR-CCM+. A segregated flow model with bounded-central differencing was 

employed to ensure accurate convective flux representation. Time integration was performed using a 

second-order implicit backward differentiation scheme, while the subgrid-scale turbulence was modeled 

through the WALE model [15]. Additionally, the Synthetic Eddy Model (SEM) [16] was adopted at the 

domain inlet to generate realistic turbulence structures. Each one of the six simulations was carried out 

under the incompressible flow assumption. For all cases, the computational setup is 2D-extruded and 

mimics a repeating-stage LPT environment, extending 25% of the axial chord in the span-wise direction. 

A polyhedral grid was used, consisting of approximately 25 million cells and refined to ensure wall- 

resolved conditions with y+ < 1 and x+ = z+ ≈ 20 over the blade surfaces. LES initialization was 

performed as described in [11]. Instantaneous flow fields were recorded over eight blade-passing periods, 

storing one snapshot every tenth time step, yielding D = 400 snapshots per profile. The operating 

conditions vary within narrow ranges typical of realistic LPT cascades under normal flight conditions, 

with the Reynolds number ranging between 7.5 × 104 and 1.1 × 105. 
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3. Autoencoder Model 

3.1. Geometry Parametrization 

A turbine cascade is generally identified by a long series of descriptive variables, including inlet and 

outlet flow angles, thickness distribution, camber line coordinates, and more. This would make searching 

for a functional relationship between geometry and profile losses a highly complex multidimensional 

problem, particularly in the case of a very limited dataset. The POD framework can be employed to 

reduce the dimensionality of the geometry data matrix. Specifically, a blade geometry can be described 

by a vector containing pairs of coordinate points (x, y). 

 

In this study, a common x-coordinate array was defined and each blade profile was represented by 

M = 1600 y-coordinate values. The normalized coordinates y(x, pi)/Cx of two adjacent blades (pi 

is the representative index of the i-th profile in the dataset) were stored in the column space of the 

matrix G, appropriately centered around the leftmost point near the leading edge of one of the two 

profiles. Duplicating each geometry array to include two adjacent blades allows for the preservation of 

information regarding the pitch-to-chord ratio of each cascade. The snapshot POD method, as proposed 

by Sirovich [17], was applied to the matrix G’: 

G’ = G − G (3.1) 

where G is the mean of the matrix G. The POD generates two complete orthogonal bases, namely the 

POD modes (φk) and the related eigenvectors (χk), such that: 

G’(x, pi) = 
Σ 
χG,k(pi)φk (x) (3.2) 

k 
 

By truncating the geometry eigenvector matrix χG at an index smaller than k, an approximated 

reconstruction of the matrix G’ is obtained. The degree of approximation can be quantified by computing 

the mean squared error (MSE) between the original interpolated coordinates and those of the reduced- 

mode reconstruction. Truncating to the first four POD modes allowed the reconstruction MSE to be 

limited to 1%. Based on this observation, k = nG = 4 coefficients χG,(1,..,4)(pi) were selected for each 

geometry as descriptive parameters. 

 
3.2. Loss Distribution Parametrization 

A POD-based post-processing procedure, as described in [10, 11], was employed to split the contribution 

of individual flow dynamics to the turbulent dissipation for each of the six LES cascades. A more in- 

depth examination of the contribution of various flow features to overall profile losses was pursued by 

evaluating the volume integral of the viscous dissipation and the POD-decomposed turbulent dissipation 

within Z = 5 sub-regions limited to the core flow, the boundary layers (BL), and the mixing region 

downstream of the vane trailing edge, as depicted in figure 1. The resulting cumulative POD-based loss 

distribution is shown in figure 2 for an exemplary cascade pertaining to the dataset. 

 
A decomposition framework analogous to the one used for the geometry can also be applied to the 

obtained loss distributions. Similar to the parametrization of the profile geometries, the normalized total 

dissipation values associated with each coherent flow structure (i.e., each spatial mode into which the 

turbulent flow has been decomposed) and each integration sub-region were collected in the columns 

of a matrix L, from which the mean was subsequently subtracted. The resulting matrix L’ was then 
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Figure 1. Sub-regions for integration of vis- 

cous and turbulent losses. 
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Figure 2. POD mode cumulative contribution 

to stagnation pressure losses. Data are normal- 

ized by the total loss for the present sample 

blade profile. 

 

decomposed into the corresponding POD modes and eigenvectors: 

L’(j, pi) = 
Σ 
χL,k(pi)φk (j) (3.3) 

k 
 

where j is the coherent flow structure index, replicated for every sub-region. An error metric based on 

the reconstruction MSE of the loss distribution was considered for selecting the truncation order of the 
χL matrix. The minimum number of modes required for a reconstruction with an MSE below 1% in all 

cases was determined to be equal to k = nL = 3. Thus, three coefficients χL,(1,..,3)(pi) were selected 

for each profile’s loss distribution as descriptive parameters. 

 
3.3. Model Training 

The reduced sets of parameters obtained through the encoding procedure of both geometries and loss 

characteristics were selected as input and output datasets for a low-dimensionality model for loss distri- 

bution prediction. 

 

Various predictive models were tested to establish a meaningful relationship between the geometrical 

parameters and the associated loss features. Instead of relying on a simple linear model, we systemati- 

cally evaluated all possible combinations of predictors up to the second order. Specifically, for each loss 

coefficient χL,(1,..,3)(pi) (representing the objective function), models were constructed using different 

subsets of four predictors, chosen among the four first-order geometry coefficients χG,(1,..,4)(pi), their 

squared values, and the cross-terms involving pairs of coefficients. The maximum order of predictors 

was restricted to quadratic terms due to the scarcity of training points. For this reason, more complex 

models, such as deep neural networks or high-order polynomial regressions, were deemed unsuitable, 

while certainly being better at capturing intricate and/or nonlinear relationships. For each loss coeffi- 

cient, the best-performing model was selected based on the lowest MSE on the training data. The results 

showed that the optimal predictor sets for the three loss coefficients consisted of: 

• 
h
χG,1 , χG,2 , χG,1 ∗ χG,4 , χG,2 ∗ χG,3

i 
for χL,1 ; 

• 
h

(χG,4)2 , χG,1 ∗ χG,3 , χG,1 ∗ χG,4 , χG,3 ∗ χG,4

i 
for χL,2 ; 
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Figure 3. Schematic representation of the POD-encoder model. 

• 
h
χG,2 , (χG,1)2 , (χG,3)2 , χG,1 ∗ χG,4

i 
for χL,3 . 

This strategy allowed mitigating the risk of overfitting and ensured that the key underlying relationships 

between profile geometry and different loss mechanisms (observed in the 5 different spatial sub-regions) 

could be effectively captured while maintaining computational efficiency and avoiding unnecessary com- 

plexity. Figure 3 schematically summarizes the overall structure of the POD-encoder model, highlighting 

the connection between geometry and loss distribution parametrization. 

 
4. Results and Discussion 

The best-fitting functions obtained for each output variable are presented in figure 4 as surfaces in terms 

of the first two geometry parameters (χG,1 and χG,2), while the other two parameters (χG,3 and χG,4) 

are fixed at mean values. In the plots, the training points are also shown as red dots, providing a visual 

reference for the distribution of the original dataset in the chosen subspace. The differences in the 

predictor sets across the three models highlight the varying sensitivity of each loss parameter to different 

geometric features. 

 
The results of the model training were analyzed by generating a dataset of 10,000 synthetic geome- 

tries as input. This dataset was constructed by systematically varying each of the four geometry coef- 

ficients (χG,(1,..,4)(pi)) over a discrete set of 10 values, spanning the full range observed across the six 

 
 

 

Figure 4. Best-fitting surfaces for the three loss coefficients as functions of the first two geometric 

parameters, with the remaining parameters fixed at constant values. Training points are also shown in 

red. 
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Figure 5. Representation of the geometry parameter 

space in the (χG,1 , χG,2 , χG,3) plane. 

Figure 6. Multidimensional response 

surface obtained from the hypercube pa- 

rameter space as a function of χG,1 and 

χG,2, for discrete values of χG,3 and the 

mean value of χG,4. 

 

original blade profiles. Figure 5 provides a graphical representation of the parameter space, illustrating 

the hypercube defined by the first three geometry coefficients while keeping the fourth coefficient at its 

mean value. The geometries corresponding to the parameter combinations at three sample edges of the 

cube are also depicted, highlighting the extent of variability captured in the generated dataset. By eval- 

uating the trained regression model on this dataset, a multidimensional response surface was obtained, 

mapping the geometry parameter variations to the three loss-related output coefficients (χL,(1,..,3)(pi)). 

The response surface is shown in figure 6, as derived by computing the total pressure loss coefficient 

ωtot for each geometry sampled within the hypercube parameter space. The value of ωtot is derived as 

normalization of the viscous dissipation and TKE production associated with each coherent flow structure 

over the entire computational domain, reconstructed from the corresponding loss parameters predicted 

by the model: 

∫ 
Dpt 

dV
 

 

 

 

tot 
V̇ · pdin Dt ij ∂xj i j ∂xj

 

In Eq. (4.1), V is the volume of the domain, V˙ 

reference dynamic pressure. 

is the volumetric flow rate through it, and pdin is a 

 

To further illustrate the capabilities of the model and the utility of its predictions, figure 7 presents 

the total pressure loss curves across the different sub-regions for the profile within the hypercube that 

exhibits the lowest loss coefficient within the maximum confidence region of the parameter space. Data 

are normalized with the global loss coefficient of the profile previously introduced as an example from 

the dataset (fig. 2), which is now set as the reference geometry. As expected, the profile features viscous 

losses mainly concentrated in the blade boundary layer, showing minimal dependence on mode order in 

the accelerating suction side (red curve) and pressure side (violet curve) regions. The most significant 

contribution to loss production is attributed to the decelerating suction side region (yellow curve), where 

turbulence-induced losses are more pronounced. The same can be observed for the wake region (cyan 

curve) and, albeit with minimal contribution, for the passage region (green curve). Overall, a 20% re- 

duction in the total loss coefficient is achieved compared to the reference. The selected profile geometry, 

In
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g
 

,3 

ω 
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Figure 7. POD mode cumulative contribution 

to stagnation pressure losses for the selected 

profile. 

Figure 8. Geometry of the cascade with the 

lowest predicted total pressure loss within the 

maximum confidence region. 

 

described by the latent geometry array (0.12, 0.05, 0.62, −0.33), is depicted in figure 8. It could serve as 

a starting point for further detailed analyses aimed at verifying the accuracy of the prediction and refining 
the design accordingly. 

 
5. Conclusions 

This study presented a data-driven approach to modeling the spatial and dynamic decomposition of total 

pressure losses in LPT blade profiles using Proper Orthogonal Decomposition. By encoding blade ge- 

ometries and related loss distributions (obtained from post-processing of high-fidelity simulations) into 

a reduced set of parameters, a predictive model can be trained, capturing key loss trends with mini- 

mal computational cost. This enables an initial exploration of the design space, allowing designers to 

gain preliminary insights into how losses and their generation mechanisms vary with geometry. With 

this information, high-fidelity simulations can then be directed more precisely toward a narrower, more 

promising subset of blade geometries, improving computational efficiency and design optimization. The 

results demonstrate that, by leveraging the strength of the described encoding procedure, even a simple 

regression framework can effectively map geometric variations to loss behavior. Future work will ex- 

plore the integration of new training data points and more complex models to further refine predictive 

accuracy. 
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