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Abstract. The paper introduces the Conditional Enhanced Super-Resolution Generative Adversarial Network 

(CESRGAN) for reconstructing high-resolution turbulent velocity fields from low-resolution inputs. CESRGAN 

consists of a conditional discriminator and a conditional generator, the latter being called CoGEN. CoGEN 

incorporates subgrid-scale (SGS) turbulence kinetic energy as conditional information, improving the recovery of 

small-scale turbulent structures with the desired level of energy that match the target level of detail in the original 

flow field. By being aware of SGS turbulence kinetic energy, CoGEN is relatively insensitive to the degree of 

detail in the input. Its advantages become more pronounced when the model is applied to heavily filtered input. 

The model is evaluated using direct numerical simulation (DNS) data of forced homogeneous isotropic turbulence. 

The results show that the proposed CoGEN reconstructs fine-scale vortical structures more precisely compared to 

the traditional generator. Particle-pair dispersion simulations validate the physical fidelity of CoGEN-

reconstructed fields, closely matching DNS results across various Stokes numbers and filtering levels.  

 

1.Introduction 

Resolving small-scale turbulence remains a fundamental challenge in flow modelling. Among the 

existing methods, several directions can be distinguished. For instance, the stochastic approximate-

deconvolution (AD) technique proposed in [2] combines deconvolution with stochastic methods and 

kinematic simulation models to capture subgrid-scale effects. In Pseudo-Direct Numerical Simulation 

(P-DNS) [3] the fine scale motion is solved at the stage of preliminary calculation in simplified 

representative volume elements (RVE) with various boundary conditions written in dimensionless form. 

The fine scale solutions are stored in a database, which according to the authors is problem-independent, 

and then it is utilized in coarse simulations. In VπLES method [4] the subgrid fluctuations are restored 

using a solution obtained for large resolved scales. The method is based on the idea of dividing the flow 

into large-scale and small-scale motions, with the first being solved on a grid, and the second using the 

vortex particle method. The method presented in our work leverages recent advances in machine 

learning to reconstruct turbulent fields. We introduce a novel conditional deep learning technique to 

enhance the recovery of small-scale turbulent structures from low-resolution inputs. 

2. Model description 

The architecture builds upon ESRGAN, a generative adversarial network (GAN) framework comprising 

two adversarially trained neural networks [5]: a generator (G) and a discriminator (D). For super-

resolution applications, the generator learns to reconstruct high-resolution (HR) data from low-

resolution (LR) inputs [6], while the discriminator evaluates the quality of generated samples. The 

original ESRGAN was enhanced in [1] through the incorporation of input conditioning, resulting in a 

model named CESRGAN. In CESRGAN, the generator is conditioned on the subgrid stress kinetic 

energy (𝑘𝑆𝐺𝑆) and the discriminator is conditioned on the corresponding LR velocity field as 

supplementary input. This dual conditioning ensures the discriminator critiques HR outputs in the 

context of their LR counterparts. 
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The architecture of the Generator and Discriminator are shown in Figure 1. The generator and 

discriminator primarily use convolutional layers with a kernel size of 33. The generator's backbone is a 

Residual in Residual Dense Block (RRDB), formed by linking multiple Residual Dense Blocks (RDB) 

with a residual scaling factor of 𝛽 = 0.2. The generator includes four RRDBs, each with three RDBs, 

as shown in Figure 1. RDBs consist of convolutional layers with leaky ReLU activations and dense skip 

connections to enhance detail extraction and prevent gradient issues. Post-RRDBs, two interpolation 

blocks upsample the embedding by a factor of 4. The discriminator consists of stacked CNN layers, 

Leaky ReLU activations, and Batch Normalization. A dropout block is included to prevent overfitting. 

 
Figure 1. Overview of the conditional generator (CoGEN) and conditional discriminator architecture. The 

generator receives filtered DNS (FDNS) velocity components (𝑢, 𝑣, 𝑤) and 𝑘𝑺𝑮𝑺 to generate super-resolution 

(SR) velocity fields. The  symbol represents element-wise summation, while © symbol indicates concatenation. 

The discriminator evaluates the realism of HR input velocity fields. 

The generated output is mathematically represented as 𝑌𝑔 = 𝐺(𝑋|𝑘SGS), where 𝑌𝑔 corresponds to a 

sample set drawn from the generated HR data distribution (𝑃𝑌𝑔
) and 𝑋 is a sample set of LR inputs. In 

CoGEN, the generator is forced to learn the correlation between 𝑘SGS and the smoothness level of 𝑋 to 

avoid retraining whenever the level of smoothing changes. 

To increase the training stability, a conditional discriminator, introduced in [7], is employed. In this 

method both LR and HR data are provided to the discriminator network. The LR data is up sampled 

through nearest neighbors’ interpolation to align with the size of HR data and then concatenated with it 

before being fed to the discriminator. By conditioning the discriminator on the LR input, we ensure that 

the discriminator incorporates LR data into its assessment. We extend this conditional framework by 

modifying the objective function based on the suggestion from [8]: 

𝒎𝒊𝒏
𝑮

𝒎𝒂𝒙
𝑫

{𝑬𝒀𝒓∼𝑷𝒀𝒓
[𝒍𝒐𝒈 𝑫𝑹𝒂

(𝒀𝒓, 𝒀𝒈|𝑿)] + 𝑬𝒀𝒈∼𝑷𝒀𝒈
[𝒍𝒐𝒈 (𝟏 − 𝑫𝑹𝒂

(𝒀𝒈, 𝒀𝒓|𝑿))] +

𝑬𝒀𝒈
′ ∼𝑷𝒀𝒈

[𝒍𝒐𝒈 (𝟏 − 𝑫𝑹𝒂
(𝒀𝒓

′ , 𝒀𝒈|𝑿))]}, 

              

(1) 

  

where 𝑌𝑟
′ is a shuffled version of 𝑌𝑟, intended to mismatch with the 𝑋 and DRa

 is the conditional 

relativistic discriminator [1]. The last term of Equation 1 forces discriminator to give a low score to the 

mismatched inputs. Incorporating this term additionally facilitates the alignment of adversarial loss with 
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pixel-wise content loss, leading to a more stable training. The loss function is composed of the 

Discriminator Loss: 

𝓛𝑫 = −𝑬𝒀𝒓∼𝑷𝒀𝒓
[𝒍𝒐𝒈 (𝑫𝑹𝒂(𝒀𝒓, 𝒀𝒈|𝑿))] − 𝑬𝒀𝒈∼𝑷𝒀𝒈

[𝒍𝒐𝒈 (𝟏 − 𝑫𝑹𝒂(𝒀𝒈, 𝒀𝒓|𝑿))] −

𝑬𝒀𝒓
′ ∼𝑷𝒀𝒓

[𝒍𝒐𝒈 (𝟏 − 𝑫𝑹𝒂(𝒀𝒓
′ , 𝒀𝒈|𝑿))], 

(2) 

and the Generator Loss: 

𝓛𝑮 = 𝝀𝓪𝓭𝓿𝓛𝓪𝓭𝓿 + 𝝀𝓿𝓮𝓵𝓛𝓿𝓮𝓵 + 𝝀𝓰𝓻𝓪𝓭𝓛𝓰𝓻𝓪𝓭 + 𝝀𝓹𝓱𝔂𝓼𝓛𝓹𝓱𝔂𝓼, (3) 

where ℒ𝒶𝒹𝓋 = −𝐸𝑌𝑔∼𝑃𝑌𝑔
[𝑙𝑜𝑔 (𝐷𝑅𝑎(𝑌𝑔, 𝑌𝑟|𝑋))] is the adversarial loss derived from Equation 1, ℒ𝓋ℯℓ =

1

𝑁
∑ |𝑌𝑔

𝑖 − 𝑌𝑟
𝑖|

2

2𝑁
𝑖=1  is the velocity field pixel-wise loss, ℒℊ𝓇𝒶𝒹 =

1

𝑁
∑ |𝛻𝑌𝑔

𝑖 − 𝛻𝑌𝑟
𝑖|

2

2𝑁
𝑖=1  is the velocity 

gradient field pixel-wise loss, and ℒ𝓅𝒽𝓎𝓈 =
1

𝑁
∑ |𝛻 ⋅ 𝑌𝑔

𝑖|
2

2𝑁
𝑖=1  is the physical consistency loss based on 

the divergence-free condition for incompressible flows, 𝜆𝒶𝒹𝓋 = 10−4, 𝜆𝓋ℯℓ = 0.89, 𝜆ℊ𝓇𝒶𝒹 = 0.085, 

and 𝜆𝓅𝒽𝓎𝓈 = 0.025. 

3. Data preparation and training 

A pair of DNS and filtered DNS (FDNS) data serves as the training dataset for the networks in this 

study. The three-dimensional velocity field of a forced, homogeneous, isotropic turbulent flow is chosen 

as the basis for training and testing. This particular case has been extensively employed both for 

assessing super-resolution methods and for investigating the particle-turbulence interactions, rendering 

it well-suited for this study. The flow field data are generated using a DNS simulation implemented in 

OpenFOAM. The computational domain is a periodic cubic box, discretized using Cartesian uniform 

grids with a resolution of 643 and the cell size of Δ = 2𝜋/64. The Uhlenbeck-Ornstein (UO) random 

process-based forcing term is utilized to sustain statistically stationary turbulence within the 

computational domain. This is achieved by continuously injecting kinetic energy solely into the low-

wavenumber modes in the Fourier space. The resulting sustainable turbulence has the following 

statistical parameters: Kolmogorov length scale 𝜂 = 0.0646 𝑚, Kolmogorov time scale 𝜏𝜂 = 208 𝑠, 

integral length scale 𝑙 = 2.415 𝑚, large vortex turnover time 𝑡𝑙 =  2.925 𝑠, Taylor microscale 𝜆 =
0.704 𝑚, Taylor Reynolds number 𝑅𝑒𝜆 = 36.457, turbulence kinetic energy TKE = 1.138 𝑚2/𝑠2 and 

the dissipation rate 𝜀 = 0.458 𝑚2/𝑠3. To prepare the LR data for the super-resolution training, we apply 

a Gaussian filter with a standard deviation of 𝜎 to the original DNS data. The filtered field is then 

downsampled using a stride of 4, reducing the resolution from 643 to 163. This two-step approach, 

filtering followed by downsampling, separates the smoothing process from the resolution reduction 

allowing for more flexibility in generating training data with various levels of detail loss. After filtering 

and downsampling, we calculate the 𝑘𝑆𝐺𝑆 for each filtered sample using the difference between the DNS 

velocity field and the filtered DNS (FDNS) velocity field. This 𝑘𝑆𝐺𝑆 value serves as the conditioning 

information for the conditional generator, providing information about the level of detail lost during the 

filtering process. A possible application of the CESRGAN is a LES with an explicit equation for 𝑘𝑆𝐺𝑆. 

The filtering and reconstruction are illustrated in Figure 2.  

 
Figure 2. Visualization of the filtering and reconstruction procedure. Left: DNS velocity magnitude field. 

Center: FDNS field with 𝜎 = 4𝛥, Right: Reconstructed HR field from the FDNS input. 
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We used 6000 snapshots from the statistically stationary state of the simulation, with a time interval of 

2𝑡𝑙 between consecutive snapshots for training. To prevent the overfitting, random rotations and 

reflections to the velocity field as a data augmentation technique were applied. Prior to feeding the data 

into the networks, we normalize each FDNS-DNS pair using the root mean square (RMS) of the FDNS 

snapshot's velocity fluctuations. The deep neural networks were implemented using PyTorch. We 

utilized the Adam optimizer with a fixed learning rate of 10-4 and a batch size of 40. Unlike previous 

studies, our model does not need adaptive learning rates or pre-training phases to achieve stable GAN 

training. This stability is achieved through the use of our conditional discriminator, which aligns the 

adversarial loss with the pixel-wise content loss. This conditional approach decreases training 

instabilities commonly encountered in GAN-based super-resolution models. The total training time was 

approximately 8 hours on one node of the HoreKa supercomputer at the Karlsruhe Institute of 

Technology (KIT), equipped with four NVIDIA A100 GPUs. To evaluate the trained generator, we 

integrate it with OpenFOAM using the C++ API of PyTorch. The generator uses the FDNS field to 

reconstruct a super-resolution (SR) velocity field on-the-fly. Table 1 details the testing configurations 

and naming conventions used in our study. 

 

Table 1. SR testing configurations and naming conventions. 

Filter  Description  Data type                                                Name 

=2 Moderate filtering 

(typical coarse simulation) 

Filtered DNS (FDNS)                           FDNS-2 

TradGEN* output                             TradGEN-2 

CoGEN output                                    CoGEN-2 

=4 Strong filtering 

(challenging reconstruction) 

Filtered DNS (FDNS)                           FDNS-4 

TradGEN output                              TradGEN-4 

CoGEN output                                    CoGEN-4 

* TradGen: traditional generator 

3. Results 

Figure 3 visualizes vortex structures of reconstructed fields using iso-surfaces of the Q-criterion (𝑄 =
0.86𝜏𝜂

2). Color-coded results distinguish between three categories: yellow (vortex structures matching 

DNS ground truth), blue (structures omitted by reconstruction models), and green (model-generated 

structures deviating from DNS). Both CoGEN and TradGEN accurately reconstruct large-scale vortices 

across all smoothness levels of the filtered DNS (FDNS) input. However, CoGEN outperforms 

TradGEN in small-scale structure recovery. First, the conditional generator demonstrates superior 

performance in fine structure recovery. CoGEN was able to recover very fine structures, whereas the 

TradGEN missed several of these fine structures, which are shown in blue. This discrepancy in the 

small-scale structures is a consequence of the ill-posed nature of the super-resolution reconstruction 

process, where multiple high-resolution reconstructions can exist for a given low-resolution input. In 

the CoGEN, this ill-posedness is alleviated by using 𝑘𝑆𝐺𝑆 as additional information, constraining the 

range of plausible solutions. Second, the CoGEN shows an ability to compensate for omitted structures 

by generating new vortical structures, shown in green in Figure 3. 

To assess the fidelity of the reconstructed velocity fields for turbulent particle dispersion we injected 

randomly 4096 pairs of particles with an initial separation distance of 0.5𝜂 and tracked them in time. 

The particle Stokes numbers were Stk = 0.125, 1 and 8. During the simulation, the ensemble averaged 

distance between paired particles, denoted as 〈𝛿〉, was calculated for each time step. Results of the 

simulation are presented in Figure 4. It is evident that the FDNS significantly underpredicts particle 

dispersion across all cases. For the moderate filtering =2, both the conditional and traditional 

generators perform remarkably well, closely matching the DNS dispersion curves for all Stokes 

numbers; therefore, their results are not presented. The advantages of the conditional generator become 

apparent only with the stronger filter =4. In this case, the CoGEN maintains excellent agreement with 

DNS across all Stokes numbers, while the TradGEN shows noticeable deviations for smaller Stokes 
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numbers. The success in reproducing particle dispersion further validates the physical fidelity of the 

reconstructed fields, as particle motion integrates the effects of multi-scale turbulent structures over 

time. 

 
Figure 3. Q-criterion isosurfaces from (a) DNS, (b) TradGEN-2, (c) CoGEN-2, (d) TradGEN-4, and (e) 

CoGEN-4. Yellow: accurate DNS reconstructions; blue: structures missed in super-resolution (SR) outputs; 

green: model-generated features deviating from DNS. 

Figure 4. Evolution of particle pair dispersion. Pairs initially separated by 0.5𝜂. 

4. Conclusion 

The paper presents a novel deep learning model for reconstruction of high-resolution turbulent velocity 

fields from low-resolution inputs. The model called CESRGAN consists of a conditional discriminator 

and a conditional generator. By incorporating subgrid-scale turbulence kinetic energy as an additional 

condition for reconstruction, this model significantly improves the recovery of small-scale turbulence 

structures compared to traditional super-resolution methods. The advantages of new model are 

illustrated for the reconstruction of fine-scales turbulent structures in the box turbulence. The model 

applied to particle dispersion simulations closely matches DNS across various Stokes numbers and 

filtering levels, highlighting the potential application of super-resolution models in particle-laden flows. 
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