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Abstract. The paper introduces the Conditional Enhanced Super-Resolution Generative Adversarial Network
(CESRGAN) for reconstructing high-resolution turbulent velocity fields from low-resolution inputs. CESRGAN
consists of a conditional discriminator and a conditional generator, the latter being called CoGEN. CoGEN
incorporates subgrid-scale (SGS) turbulence kinetic energy as conditional information, improving the recovery of
small-scale turbulent structures with the desired level of energy that match the target level of detail in the original
flow field. By being aware of SGS turbulence kinetic energy, CoGEN is relatively insensitive to the degree of
detail in the input. Its advantages become more pronounced when the model is applied to heavily filtered input.
The model is evaluated using direct numerical simulation (DNS) data of forced homogeneous isotropic turbulence.
The results show that the proposed CoGEN reconstructs fine-scale vortical structures more precisely compared to
the traditional generator. Particle-pair dispersion simulations validate the physical fidelity of CoGEN-
reconstructed fields, closely matching DNS results across various Stokes numbers and filtering levels.

1.Introduction

Resolving small-scale turbulence remains a fundamental challenge in flow modelling. Among the
existing methods, several directions can be distinguished. For instance, the stochastic approximate-
deconvolution (AD) technique proposed in [2] combines deconvolution with stochastic methods and
kinematic simulation models to capture subgrid-scale effects. In Pseudo-Direct Numerical Simulation
(P-DNS) [3] the fine scale motion is solved at the stage of preliminary calculation in simplified
representative volume elements (RVE) with various boundary conditions written in dimensionless form.
The fine scale solutions are stored in a database, which according to the authors is problem-independent,
and then it is utilized in coarse simulations. In VzLES method [4] the subgrid fluctuations are restored
using a solution obtained for large resolved scales. The method is based on the idea of dividing the flow
into large-scale and small-scale motions, with the first being solved on a grid, and the second using the
vortex particle method. The method presented in our work leverages recent advances in machine
learning to reconstruct turbulent fields. We introduce a novel conditional deep learning technique to
enhance the recovery of small-scale turbulent structures from low-resolution inputs.

2. Model description

The architecture builds upon ESRGAN, a generative adversarial network (GAN) framework comprising
two adversarially trained neural networks [5]: a generator (G) and a discriminator (D). For super-
resolution applications, the generator learns to reconstruct high-resolution (HR) data from low-
resolution (LR) inputs [6], while the discriminator evaluates the quality of generated samples. The
original ESRGAN was enhanced in [1] through the incorporation of input conditioning, resulting in a
model named CESRGAN. In CESRGAN, the generator is conditioned on the subgrid stress kinetic
energy (ksgs) and the discriminator is conditioned on the corresponding LR velocity field as
supplementary input. This dual conditioning ensures the discriminator critiques HR outputs in the
context of their LR counterparts.
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The architecture of the Generator and Discriminator are shown in Figure 1. The generator and
discriminator primarily use convolutional layers with a kernel size of 33. The generator's backbone is a
Residual in Residual Dense Block (RRDB), formed by linking multiple Residual Dense Blocks (RDB)
with a residual scaling factor of § = 0.2. The generator includes four RRDBs, each with three RDBs,
as shown in Figure 1. RDBs consist of convolutional layers with leaky ReL U activations and dense skip
connections to enhance detail extraction and prevent gradient issues. Post-RRDBs, two interpolation
blocks upsample the embedding by a factor of 4. The discriminator consists of stacked CNN layers,
Leaky ReLU activations, and Batch Normalization. A dropout block is included to prevent overfitting.
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Figure 1. Overview of the conditional generator (CoGEN) and conditional discriminator architecture. The
generator receives filtered DNS (FDNS) velocity components (u,v,w) and kggs to generate super-resolution
(SR) velocity fields. The @ symbol represents element-wise summation, while © symbol indicates concatenation.
The discriminator evaluates the realism of HR input velocity fields.

Quality score

The generated output is mathematically represented as Y; = G(X|kggs), where Y, corresponds to a
sample set drawn from the generated HR data distribution (Pyg) and X is a sample set of LR inputs. In

CoGEN, the generator is forced to learn the correlation between kggg and the smoothness level of X to
avoid retraining whenever the level of smoothing changes.

To increase the training stability, a conditional discriminator, introduced in [7], is employed. In this
method both LR and HR data are provided to the discriminator network. The LR data is up sampled
through nearest neighbors’ interpolation to align with the size of HR data and then concatenated with it
before being fed to the discriminator. By conditioning the discriminator on the LR input, we ensure that
the discriminator incorporates LR data into its assessment. We extend this conditional framework by
modifying the objective function based on the suggestion from [8]:

minmax (Ey, .p, [log Dg, (Y, Yg|X)] + Ey,-p, [log (1 D, (¥4 ¥,|X))| +
Ey, p, |log (1 - D, (¥1.Y,[X))]}, M
where Y, is a shuffled version of Y., intended to mismatch with the X and Dg, is the conditional

relativistic discriminator [1]. The last term of Equation 1 forces discriminator to give a low score to the
mismatched inputs. Incorporating this term additionally facilitates the alignment of adversarial loss with
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pixel-wise content loss, leading to a more stable training. The loss function is composed of the
Discriminator Loss:

Ly =—Ey p, [log (Dra(Y: Yg|X))] ~ Ey,p,, [log (1-Dra(¥y, YT|X))] -

2
Eyip, [1og(1—Dra(Y;,¥4|X))],
and the Generator Loss:
LG = Aadv*cudv + Avet’Lvel’ + Agradﬁgrad + )lphyszhyza (3)

where L4, = _Eyg~ Py, [lo g (DRa(Yg, Y, |X ))] is the adversarial loss derived from Equation 1, £, =

1 ; 2 . . . . 1 ; 2 . .
5 ?’:1|Yg‘ - lel2 is the velocity field pixel-wise loss, Ly = Il-V:1||7Yg‘ — \71/,.‘|2 is the velocity

gradient field pixel-wise loss, and L4, = % Ii"=1|l7 . Ygi|z is the physical consistency loss based on
the divergence-free condition for incompressible flows, 1,4, = 107%, 1., = 0.89, Agraa = 0.085,
and A,4,s = 0.025.

3. Data preparation and training

A pair of DNS and filtered DNS (FDNS) data serves as the training dataset for the networks in this
study. The three-dimensional velocity field of a forced, homogeneous, isotropic turbulent flow is chosen
as the basis for training and testing. This particular case has been extensively employed both for
assessing super-resolution methods and for investigating the particle-turbulence interactions, rendering
it well-suited for this study. The flow field data are generated using a DNS simulation implemented in
OpenFOAM. The computational domain is a periodic cubic box, discretized using Cartesian uniform
grids with a resolution of 64° and the cell size of A = 27/64. The Uhlenbeck-Ornstein (UO) random
process-based forcing term is utilized to sustain statistically stationary turbulence within the
computational domain. This is achieved by continuously injecting kinetic energy solely into the low-
wavenumber modes in the Fourier space. The resulting sustainable turbulence has the following
statistical parameters: Kolmogorov length scale n = 0.0646 m, Kolmogorov time scale 7,, = 208s,
integral length scale [ = 2.415 m, large vortex turnover time t; = 2.925 s, Taylor microscale 1 =
0.704 m, Taylor Reynolds number Re; = 36.457, turbulence kinetic energy TKE = 1.138 m?/s? and
the dissipation rate £ = 0.458 m?/s3. To prepare the LR data for the super-resolution training, we apply
a Gaussian filter with a standard deviation of ¢ to the original DNS data. The filtered field is then
downsampled using a stride of 4, reducing the resolution from 64° to 16°. This two-step approach,
filtering followed by downsampling, separates the smoothing process from the resolution reduction
allowing for more flexibility in generating training data with various levels of detail loss. After filtering
and downsampling, we calculate the kg for each filtered sample using the difference between the DNS
velocity field and the filtered DNS (FDNS) velocity field. This kggs value serves as the conditioning
information for the conditional generator, providing information about the level of detail lost during the
filtering process. A possible application of the CESRGAN is a LES with an explicit equation for kggs.
The filtering and reconstruction are illustrated in Figure 2.
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Figure 2. Visualization of the filtering and reconstruction procedure. Left: DNS velocity magnitude field.
Center: FDNS field with ¢ = 44, Right: Reconstructed HR field from the FDNS input.
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We used 6000 snapshots from the statistically stationary state of the simulation, with a time interval of
2t; between consecutive snapshots for training. To prevent the overfitting, random rotations and
reflections to the velocity field as a data augmentation technique were applied. Prior to feeding the data
into the networks, we normalize each FDNS-DNS pair using the root mean square (RMS) of the FDNS
snapshot's velocity fluctuations. The deep neural networks were implemented using PyTorch. We
utilized the Adam optimizer with a fixed learning rate of 10 and a batch size of 40. Unlike previous
studies, our model does not need adaptive learning rates or pre-training phases to achieve stable GAN
training. This stability is achieved through the use of our conditional discriminator, which aligns the
adversarial loss with the pixel-wise content loss. This conditional approach decreases training
instabilities commonly encountered in GAN-based super-resolution models. The total training time was
approximately 8 hours on one node of the HoreKa supercomputer at the Karlsruhe Institute of
Technology (KIT), equipped with four NVIDIA A100 GPUs. To evaluate the trained generator, we
integrate it with OpenFOAM using the C++ API of PyTorch. The generator uses the FDNS field to
reconstruct a super-resolution (SR) velocity field on-the-fly. Table 1 details the testing configurations
and naming conventions used in our study.

Table 1. SR testing configurations and naming conventions.

Filter = Description Data type Name
o=2A  Moderate filtering Filtered DNS (FDNS) FDNS-2
(typical coarse simulation) TradGEN" output TradGEN-2
CoGEN output CoGEN-2
c=4A  Strong filtering Filtered DNS (FDNS) FDNS-4
(challenging reconstruction) TradGEN output TradGEN-4
CoGEN output CoGEN-+4

* TradGen: traditional generator

3. Results

Figure 3 visualizes vortex structures of reconstructed fields using iso-surfaces of the Q-criterion (Q =
0.861%). Color-coded results distinguish between three categories: yellow (vortex structures matching
DNS ground truth), blue (structures omitted by reconstruction models), and green (model-generated
structures deviating from DNS). Both CoGEN and TradGEN accurately reconstruct large-scale vortices
across all smoothness levels of the filtered DNS (FDNS) input. However, CoGEN outperforms
TradGEN in small-scale structure recovery. First, the conditional generator demonstrates superior
performance in fine structure recovery. CoGEN was able to recover very fine structures, whereas the
TradGEN missed several of these fine structures, which are shown in blue. This discrepancy in the
small-scale structures is a consequence of the ill-posed nature of the super-resolution reconstruction
process, where multiple high-resolution reconstructions can exist for a given low-resolution input. In
the CoGEN, this ill-posedness is alleviated by using kg as additional information, constraining the
range of plausible solutions. Second, the CoGEN shows an ability to compensate for omitted structures
by generating new vortical structures, shown in green in Figure 3.

To assess the fidelity of the reconstructed velocity fields for turbulent particle dispersion we injected
randomly 4096 pairs of particles with an initial separation distance of 0.51 and tracked them in time.
The particle Stokes numbers were Sty = 0.125, 1 and 8. During the simulation, the ensemble averaged
distance between paired particles, denoted as (&), was calculated for each time step. Results of the
simulation are presented in Figure 4. It is evident that the FDNS significantly underpredicts particle
dispersion across all cases. For the moderate filtering c=2A, both the conditional and traditional
generators perform remarkably well, closely matching the DNS dispersion curves for all Stokes
numbers; therefore, their results are not presented. The advantages of the conditional generator become
apparent only with the stronger filter 5=4A. In this case, the COGEN maintains excellent agreement with
DNS across all Stokes numbers, while the TradGEN shows noticeable deviations for smaller Stokes
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numbers. The success in reproducing particle dispersion further validates the physical fidelity of the
reconstructed fields, as particle motion integrates the effects of multi-scale turbulent structures over

time.

(d) TradGEN-4 (e) CoGEN-4 (b) TradGEN-2 (c) CoGEN-2

Figure 3. Q-criterion isosurfaces from (a) DNS, (b) TradGEN-2, (¢) CoGEN-2, (d) TradGEN-4, and (e)
CoGEN-4. Yellow: accurate DNS reconstructions; blue: structures missed in super-resolution (SR) outputs;
green: model-generated features deviating from DNS.
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Figure 4. Evolution of particle pair dispersion. Pairs initially separated by 0.57).

4. Conclusion
The paper presents a novel deep learning model for reconstruction of high-resolution turbulent velocity

fields from low-resolution inputs. The model called CESRGAN consists of a conditional discriminator
and a conditional generator. By incorporating subgrid-scale turbulence kinetic energy as an additional
condition for reconstruction, this model significantly improves the recovery of small-scale turbulence
structures compared to traditional super-resolution methods. The advantages of new model are
illustrated for the reconstruction of fine-scales turbulent structures in the box turbulence. The model
applied to particle dispersion simulations closely matches DNS across various Stokes numbers and
filtering levels, highlighting the potential application of super-resolution models in particle-laden flows.
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