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Abstract. The data-driven aerothermal modeling method provides strong support for the hypersonic 

aircraft design. In order to improve the accuracy of aerothermal prediction under small training 

samples and enhance the global geometric generalization ability, this paper proposes Euler equation 

embedding Double-series Residual neural Network (ED-ResNet). The hypersonic compressible 

boundary layer theory indicates that the aerothermal loads largely depend on the outer edge 

information of the boundary layer, and the flow field outside the boundary layer can be regarded as 

the dominant region of inviscid flow. Based on the above theory, ED-ResNet innovatively embeds 

the Euler equation into the input front-end of the data-driven model. The performance of the 

proposed ED-ResNet is validated using hypersonic double-ellipsoid, hypersonic ellipsoid, and blunt 

cone. The results indicate that with only 4 training samples, ED-ResNet can obtain high-precision 

aerothermal extrapolation prediction results with an Normalized Root Mean Squared Error (NRMSE) 

of less than 7% relative to Reynolds-Averaged. Meanwhile, the ED-ResNet can successfully predict 

aerothermal loads for unknown geometry, with NRMSE less than 13%.  

Keywords: Aerothermal prediction; data-driven; small-sample modeling; global shape 

generalization  

1.Introduction 

During the design phase of hypersonic aircraft, it is necessary to accurately predict aerothermal 

loads[1].With the rapid development of data science and machine learning, data-driven methods have given 

strong support for rapid aerothermal prediction[2]. The existing data-driven aerothermal load modeling 

methods can be mainly divided into three categories, aerothermal feature space dimensionality reduction 

modeling methods[3,4,5], aerothermal loads pointwise modeling methods[6,7,8], and aerothermal physical 

information embedding modeling methods[9,10,11,12]. The first two types of data-driven aerothermal load 

modeling methods have the advantages of simplicity and efficiency, but there are still problems such as 

large modeling sample size, insufficient geometric generalization ability, and low accuracy upper limit[13]. 

The most notable feature of the third category of methods is the incorporation of prior physical information 

or mechanism models into data-driven aerodynamic thermal models, which endows the data-driven models 

with a certain degree of interpretability, potentially reducing the demand for data samples and enhancing 

generalization capability. 

This research work is based on the ideas of the third category of methods and proposes Euler equation 

embedding Double-series Residual neural Network, ED-ResNet. Firstly, Euler equation is solved to obtain 

the inviscid solution on the wall position, and the wall inviscid solution is approximated to the outer edge 

information of the boundary layer. The wall inviscid solution contains global geometric information of the 

aircraft, which can improve the global geometric generalization ability of ED-ResNet. Next, consider the 

numerous physical information contained in the wall inviscid solution. In order to reduce the the number 

of training samples of ED-ResNet, the physical features of boundary layer outer edge that have the best 

correlation with aerothermal modeling are provided by combining mechanism model theory knowledge 

with data-driven model analysis results. Then, D-ResNet is constructed to achieve the prediction of 

aerothermal loads based on the outer edge features of the boundary layer. Finally, by combining the models 

of hypersonic double-ellipsoid, hypersonic ellipsoid, and blunt cone, traditional data-driven modeling 

methods such as POD+Kriging and data-driven modeling methods without embedding Euler equation are 

compared to verify the small sample modeling ability and global geometric generalization ability of ED-

ResNet. The shapes of the supersonic double ellipsoid, supersonic ellipsoid, and blunt cone are shown in 

Figure 1. 
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2.Method  

The specific process of predicting aerothermal loads using ED-ResNet is depicted in Figure 2. ED-ResNet 

mainly consists of the module for solving Euler equation and the data-driven model D-ResNet, and the 

bridge between the two is the boundary layer outer edge features. 

 

 
 

 

(a) Double-ellipsoid and its surface centerline (b) Hypersonic ellipsoid (c) Blunt cone 

Figure.1 The shapes of the hypersonic double ellipsoid, hypersonic ellipsoid, and blunt cone 

 

Figure.2 Implementation flowchart of the detailed idea of ED-ResNet 

The mechanism equations contain rich physical information that can guide the construction of boundary 

layer outer edge features.The classic flat plate aerothermal loads calculation Eq. (1) and cylinder stagnation 

point aerothermal loads calculation Eq. (2) are the most basic equations for calculating aerothermal loads . 

From these, features that determine the aerothermal distribution are summarized. Using the incoming flow 

density ρ∞, incoming flow temperature T∞, the 2-norm of the incoming flow velocity U∞, and the reference 

length of the geometric shape (the distance from the leading edge to the trailing edge) L, these features are 

non-dimensionalized to obtain the final boundary layer outer edge features, as shown in Table 1. 
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The data-driven model D-ResNet is composed of two residual neural networks connected in series, as 

shown in Figure 3. The inputs of ResNet1 are the distribution of boundary layer outer edge features 

/ max( )d
i i if f f= , and the output is 0/q q . The inputs of ResNet2 are the boundary layer outer edge features 

if  and the output 0/q q  of ResNet1, and the output of ResNet2 is the non-dimensional aerothermal load 

3/ ( )q U  . In D-ResNet, the number of residual blocks for both ResNet1 and ResNet2 is set to 6, the width 

of dense layers is set to 64. 
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Table 1 Features of the outer boundary layer 

No. Physical Interpretation Feature No. Physical Interpretation Feature 

1f  Dimensionless streamline length.  /es L  
2f  Dimensionless flow rate. ( ) / ( )e eU U    

3f  
The power of 0.5 of local 

Reynolds number. 
sRe
 4f  

Dimensionless temperature 

difference. 
( ) /

e w
T T T
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−  

5f  
Approximation represents the 

dimensionless kinetic energy. 
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Dimensionless velocity gradients 

in y direction. 

( )

( )

/

/

ed U U

d y L



 
8f  

Dimensionless velocity 

gradients in z direction. 

( )

( )

/

/

ed U U

d z L



 

 

3.Results 

3.1 Example verification of the modeling and prediction capabilities with small samples and results 

discussion 

OD-ResNet: To verify the importance of the Euler equation embedded in ED-ResNet, the Euler equation 

is removed from ED-ResNet, and only D-ResNet is used to construct the data-driven model for aerothermal 

loads.  

E-ResNet: To demonstrate the positive effect of D-ResNet architecture in the ED-ResNet, we replace 

the D-ResNet part with a single ResNet while retaining the Euler equation embedding. 

POD + kriging: A traditional data-driven aerothermal loads modeling method used for comparative 

verification of the superiority of ED-ResNet. 

Figure 4 shows the NRMSE curve of the aerothermal loads predicted by ED-ResNet, E-ResNet, OD-

ResNet and POD+kriging as a function of the number of training samples, with RANS calculated 

aerothermal loads serving as the true values. Under various numbers of training samples, the NRMSE of 

ED-ResNet is lower than the NRMSE of OD-ResNet, especially in small training samples where the 

comparison is significant. With just 4 training samples, embedding the Euler equation reduces the NRMSE 

of data-driven model prediction results by one order of magnitude. This indicates that embedding the Euler 

equation can significantly reduce NRMSE of the data-driven model prediction results in small sample 

modeling. 

  

Figure 3 Architecture of D-ResNet Figure 4 The functional relationship between NRMSE 

curves and number of training samples for aerothermal 

predictions of different models 

The incoming flow states of the hypersonic double-ellipsoid training cases and extrapolation test 

cases, and the NRMSE of the aerothermal loads predicted by ED-ResNet, are presented in Table 2. The 
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results indicate that under the condition of training with a small sample size, the NRMSE of the 

prediction results for extrapolation test cases using ED-ResNet does not exceed 7%. As shown in Figure 

5, a comparison is made between the aerothermal results for the extrapolation test case 3 predicted by ED-

ResNet and those calculated by RANS; the predicted results align closely with the RANS calculations. 

Table 2 The incoming flow states of the hypersonic double-ellipsoid training cases and extrapolation test cases, 

and the NRMSE of the aerothermal loads predicted by ED-ResNet 

Training Cases Test Cases 

Labels Ma∞ α (°) β(°) T∞ (K) P∞ (Pa) Labels Ma∞ α (°) β(°) T∞ (K) 
P∞ 

(Pa) 

NRMS

E 

1 10.5 22.6 4.6 69 121.6 1 12.4 -3.3 -0.3 75 139.1 6.5% 

2 18.6 -2.7 -3.6 69 121.6 2 16.7 -0.4 1.6 81 157.0 4.9% 

3 11.7 9.7 -0.1 69 121.6 3 13.9 6.1 2.5 63 104.9 4.1% 

4 16.0 15.4 2.2 69 121.6 4 15.4 3.8 -4.6 57 89.0 7.0% 

3.2 Example verification of global geometry generalization and results discussion 

To verify the global shape generalization of ED-ResNet, hypersonic ellipsoid cases are used as training 

samples, while hypersonic double-ellipsoid cases and blunt cone cases are used as test samples. Table 3 

shows the incoming flow states of hypersonic ellipsoid training samples, and double-ellipsoid test cases, 

and the NRMSE of the aerothermal loads predicted by ED-ResNet. During the numerical computations of 

hypersonic ellipsoid and double-ellipsoid, T =69K, P =121.6Pa, and wT =288K. Table 4 shows the 

incoming flow states of blunt cone test cases, and the NRMSE of the aerothermal loads predicted by ED-

ResNet. It is found from table 3 and  table 4 that the NRMSE of aerothermal loads predicted by ED-ResNet 

is less than 13%. Figure 6 and Figure 7 further showed the aerothermal contours predicted by ED-ResNet, 

using hypersonic double-ellipsoid test case 1, blunt cone test case 1 and test case 4 as examples, and 

compared them with RANS calculation results. It is found that the aerothermal contours predicted by ED-

ResNet are basically consistent with RANS calculation results.  

Table 3 The incoming flow states of the hypersonic ellipsoid training cases and double-ellipsoid test cases, 

and the NRMSE of the aerothermal loads predicted by ED-ResNet 

Hypersonic ellipsoid training cases Double-ellipsoid test cases 

Labels Ma∞ α/° β/° Labels Ma∞ α/° β/° Labels Ma∞ α/° β/° NRMSE 

1 17.4 15.5 1.7 8 10.0 0.0 0.0 1 10.0 0.0 0.0 6.7% 

2 19.4 -1.8 -4.1 9 10.0 5.0 0.0 2 8.1 10.9 3.8 8.4% 

3 20.5 22.2 3.7 10 10.0 10.1 4.5 3 16.7 -0.4 1.6 7.2% 

4 15.2 12.9 2.6 11 10.0 10.0 0.0 4 19.7 13.7 3.5 7.2% 

5 13.7 7.6 -0.7 12 10.0 15.0 0.0 5 12.4 -3.3 0.3 6.9% 

6 12.3 -0.2 -3.0 13 10.0 20.0 0.0 6 15.4 3.8 4.6 7.0% 

7 9.6 20.5 1.0 14 10.0 30.0 0.0 7 13.9 6.1 2.5 5.9% 

 

Table 4 The incoming flow states of the blunt cone test cases and the 

NRMSE of the aerothermal loads predicted by ED-ResNet 

Case Labels Ma∞ α/° β/° T∞ / K P∞ / Pa NRMSE 

1 10.0 0 0 69 121.6 10.0% 

2 12.3 -0.2 -3.0 69 121.6 10.7% 

3 15.2 12.9 2.6 51 73.9 12.9% 

4 13.7 7.6 -0.7 75 139.1 12.3% 

 

Figure 8 compares the ED-ResNet prediction results, Eckert’s Reference Temperature Method (ERT) 

prediction results and RANS calculation results for the aerothermal loads on the surface centerline (shown 
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in Figure 1(a)) of the hypersonic double-ellipsoid test case 5. The results show that when dealing with 

unknown geometric shapes, the aerothermal load distribution predicted by ED-ResNet still highly agree 

with the RANS calculation results, compared to the ERT method, the NRMSE still possessing a significant 

accuracy advantage. The above results demonstrate the excellent global geometric shape generalization 

capability of the ED-ResNet . 

 

    

(a) ED-ResNet (b) RANS (a) ED-ResNet (b) RANS 

Figure.5 Extrapolation test case 3, a comparison of the 

aerothermal results predicted by ED-ResNet using 4 

training samples and those calculated by RANS. 

Figure.6 Double-ellipsoid test case 1, a comparison of the 

aerothermal contours predicted by ED-ResNet using hypersonic 

ellipsoid training samples and those calculated by RANS  

    
(a) RANS, case 4 (b) ED-ResNet, case 4 (a) Upper surface center line (b) Lower surface center line 

Figure 7 Blunt cone test cases, comparisons of the 

aerothermal contours predicted by ED-ResNet using 

hypersonic ellipsoid training samples and those 

calculated by RANS 

Figure 8 Comparison of ED-ResNet prediction results, ERT 

prediction results, and RANS calculation results for the 

aerothermal loads of hypersonic double-ellipsoid test case 5 

4. Conclusion  

For the aerothermal prediction of hypersonic double-ellipsoid with variable inflow states, ED-ResNet 

demands only 4 training samples, and the NRMSE of the predicted aerothermal load is less than 7%. 

Compared with POD+kriging, the NRMSE of aerothermal load predicted by ED-ResNet can be reduced by 

more than 2 orders of magnitude, which is 1/20 of the NRMSE of aerothermal load predicted by OD-

ResNet. The embedding of the Euler equation has brought powerful small sample modeling capability to 

ED-ResNet. For the aerothermal prediction of variable geometric shapes, ED-ResNet achieves an 

prediction NRMSE of less than 13%.The embedding of Euler equation enables ED-ResNet to have good 

generalization ability for geometric shapes, and ED-ResNet can give relatively accurate predictions for 

aerothermal loads of unknown geometric shapes. In future work, there is potential to build a large model 

for aerothermal prediction based on the ED-ResNet. However, it is necessary to improve the ED-ResNet to 

adapt to aerothermal prediction under conditions such as shock-boundary layer interference, transition, and 

high-temperature chemical reactions, and other disturbances. 
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