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Abstract. The data-driven aerothermal modeling method provides strong support for the hypersonic
aircraft design. In order to improve the accuracy of aerothermal prediction under small training
samples and enhance the global geometric generalization ability, this paper proposes Euler equation
embedding Double-series Residual neural Network (ED-ResNet). The hypersonic compressible
boundary layer theory indicates that the aerothermal loads largely depend on the outer edge
information of the boundary layer, and the flow field outside the boundary layer can be regarded as
the dominant region of inviscid flow. Based on the above theory, ED-ResNet innovatively embeds
the Euler equation into the input front-end of the data-driven model. The performance of the
proposed ED-ResNet is validated using hypersonic double-ellipsoid, hypersonic ellipsoid, and blunt
cone. The results indicate that with only 4 training samples, ED-ResNet can obtain high-precision
aerothermal extrapolation prediction results with an Normalized Root Mean Squared Error (NRMSE)
of less than 7% relative to Reynolds-Averaged. Meanwhile, the ED-ResNet can successfully predict
aerothermal loads for unknown geometry, with NRMSE less than 13%.
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1.Introduction

During the design phase of hypersonic aircraft, it is necessary to accurately predict aerothermal
loads[ 1]. With the rapid development of data science and machine learning, data-driven methods have given
strong support for rapid aerothermal prediction[2]. The existing data-driven aerothermal load modeling
methods can be mainly divided into three categories, acrothermal feature space dimensionality reduction
modeling methods[3,4,5], aerothermal loads pointwise modeling methods[6,7,8], and aerothermal physical
information embedding modeling methods[9,10,11,12]. The first two types of data-driven acrothermal load
modeling methods have the advantages of simplicity and efficiency, but there are still problems such as
large modeling sample size, insufficient geometric generalization ability, and low accuracy upper limit[13].
The most notable feature of the third category of methods is the incorporation of prior physical information
or mechanism models into data-driven aerodynamic thermal models, which endows the data-driven models
with a certain degree of interpretability, potentially reducing the demand for data samples and enhancing
generalization capability.

This research work is based on the ideas of the third category of methods and proposes Euler equation
embedding Double-series Residual neural Network, ED-ResNet. Firstly, Euler equation is solved to obtain
the inviscid solution on the wall position, and the wall inviscid solution is approximated to the outer edge
information of the boundary layer. The wall inviscid solution contains global geometric information of the
aircraft, which can improve the global geometric generalization ability of ED-ResNet. Next, consider the
numerous physical information contained in the wall inviscid solution. In order to reduce the the number
of training samples of ED-ResNet, the physical features of boundary layer outer edge that have the best
correlation with aerothermal modeling are provided by combining mechanism model theory knowledge
with data-driven model analysis results. Then, D-ResNet is constructed to achieve the prediction of
aerothermal loads based on the outer edge features of the boundary layer. Finally, by combining the models
of hypersonic double-ellipsoid, hypersonic ellipsoid, and blunt cone, traditional data-driven modeling
methods such as POD+Kriging and data-driven modeling methods without embedding Euler equation are
compared to verify the small sample modeling ability and global geometric generalization ability of ED-
ResNet. The shapes of the supersonic double ellipsoid, supersonic ellipsoid, and blunt cone are shown in
Figure 1.
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2.Method

The specific process of predicting acrothermal loads using ED-ResNet is depicted in Figure 2. ED-ResNet
mainly consists of the module for solving Euler equation and the data-driven model D-ResNet, and the
bridge between the two is the boundary layer outer edge features.
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Figure.1 The shapes of the hypersonic double ellipsoid, hypersonic ellipsoid, and blunt cone
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Figure.2 Implementation flowchart of the detailed idea of ED-ResNet

The mechanism equations contain rich physical information that can guide the construction of boundary
layer outer edge features.The classic flat plate aerothermal loads calculation Eq. (1) and cylinder stagnation
point aerothermal loads calculation Eq. (2) are the most basic equations for calculating aerothermal loads .
From these, features that determine the aerothermal distribution are summarized. Using the incoming flow
density p., incoming flow temperature 7., the 2-norm of the incoming flow velocity U, and the reference
length of the geometric shape (the distance from the leading edge to the trailing edge) L, these features are
non-dimensionalized to obtain the final boundary layer outer edge features, as shown in Table 1.
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The data-driven model D-ResNet is composed of two residual neural networks connected in series, as
shown in Figure 3. The inputs of ResNetl are the distribution of boundary layer outer edge features

£ = f, /max(f;), and the output is ¢/ g, . The inputs of ResNet2 are the boundary layer outer edge features
f; and the output ¢ /g, of ResNetl, and the output of ResNet2 is the non-dimensional aerothermal load

q/(p,U2) . In D-ResNet, the number of residual blocks for both ResNet1 and ResNet2 is set to 6, the width

of dense layers is set to 64.
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Table 1 Features of the outer boundary layer

No. Physical Interpretation Feature No. Physical Interpretation Feature
/i Dimensionless streamline length. s, /L 5 Dimensionless flow rate. U/ (pU)
I The power of 0.5 of local Re, i D1mens1qnless temperature (T,~T,)/T,
Reynolds number. difference.
/. Approximation represents the u; ; Dimensionless velocity (U, /U,)
3 dimensionless kinetic energy. Uz 6 gradients in x direction. d(x/L)
,  Dimensionless velocity gradients ¢ (v, /U.) f Dimensionless velocity d(U,/U,)
7 in y direction. d(y/L) 8 gradients in z direction. d(z/1)
3.Results

3.1 Example verification of the modeling and prediction capabilities with small samples and results
discussion

OD-ResNet: To verify the importance of the Euler equation embedded in ED-ResNet, the Euler equation
is removed from ED-ResNet, and only D-ResNet is used to construct the data-driven model for aerothermal
loads.

E-ResNet: To demonstrate the positive effect of D-ResNet architecture in the ED-ResNet, we replace
the D-ResNet part with a single ResNet while retaining the Euler equation embedding.

POD + kriging: A traditional data-driven aerothermal loads modeling method used for comparative
verification of the superiority of ED-ResNet.

Figure 4 shows the NRMSE curve of the aerothermal loads predicted by ED-ResNet, E-ResNet, OD-
ResNet and POD+kriging as a function of the number of training samples, with RANS calculated
aerothermal loads serving as the true values. Under various numbers of training samples, the NRMSE of
ED-ResNet is lower than the NRMSE of OD-ResNet, especially in small training samples where the
comparison is significant. With just 4 training samples, embedding the Euler equation reduces the NRMSE
of data-driven model prediction results by one order of magnitude. This indicates that embedding the Euler
equation can significantly reduce NRMSE of the data-driven model prediction results in small sample
modeling.
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Figure 3 Architecture of D-ResNet Figure 4 The functional relationship between NRMSE
curves and number of training samples for aerothermal
predictions of different models

The incoming flow states of the hypersonic double-ellipsoid training cases and extrapolation test
cases, and the NRMSE of the aerothermal loads predicted by ED-ResNet, are presented in Table 2. The
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prediction results for extrapolation test cases using ED-ResNet does not exceed 7%. As shown in Figure
5, a comparison is made between the aerothermal results for the extrapolation test case 3 predicted by ED-
ResNet and those calculated by RANS; the predicted results align closely with the RANS calculations.

Table 2 The incoming flow states of the hypersonic double-ellipsoid training cases and extrapolation test cases,
and the NRMSE of the aerothermal loads predicted by ED-ResNet

Training Cases Test Cases
Labels Maw a(°) B() Tu(K) Po(Pa) Labels Max a(®) BC) Tu(K) (1’;2) NRMS
1 10.5 226 4.6 69 121.6 1 124 -33 -03 75 139.1 6.5%
2 18.6 -2.7 -3.6 69 121.6 2 16.7 -04 1.6 81 157.0 4.9%
3 11.7 9.7 -0.1 69 121.6 3 139 6.1 25 63 104.9 4.1%
4 16.0 154 2.2 69 121.6 4 154 38 -4.6 57 89.0 7.0%

3.2 Example verification of global geometry generalization and results discussion

To verify the global shape generalization of ED-ResNet, hypersonic ellipsoid cases are used as training
samples, while hypersonic double-ellipsoid cases and blunt cone cases are used as test samples. Table 3
shows the incoming flow states of hypersonic ellipsoid training samples, and double-ellipsoid test cases,
and the NRMSE of the aerothermal loads predicted by ED-ResNet. During the numerical computations of
hypersonic ellipsoid and double-ellipsoid, 7, =69K, P, =121.6Pa, and T,, =288K. Table 4 shows the

incoming flow states of blunt cone test cases, and the NRMSE of the aerothermal loads predicted by ED-
ResNet. It is found from table 3 and table 4 that the NRMSE of aerothermal loads predicted by ED-ResNet
is less than 13%. Figure 6 and Figure 7 further showed the acrothermal contours predicted by ED-ResNet,
using hypersonic double-ellipsoid test case 1, blunt cone test case 1 and test case 4 as examples, and
compared them with RANS calculation results. It is found that the aerothermal contours predicted by ED-
ResNet are basically consistent with RANS calculation results.

Table 3 The incoming flow states of the hypersonic ellipsoid training cases and double-ellipsoid test cases,
and the NRMSE of the aerothermal loads predicted by ED-ResNet

Hypersonic ellipsoid training cases

Double-ellipsoid test cases

Labels Ma., o/° p/°  Labels Mas, o/° p/°  Labels Ma, o/° p/° NRMSE
1 174 155 1.7 8 10.0 0.0 0.0 1 100 0.0 0.0 6.7%
2 194 -18 4.1 9 10.0 5.0 0.0 2 81 109 38 8.4%
3 205 222 3.7 10 10.0 10.1 4.5 3 167 -04 1.6 7.2%
4 152 129 26 11 10.0 10.0 0.0 4 19.7 137 3.5 7.2%
5 13.7 7.6  -0.7 12 10.0 15.0 0.0 5 124 -33 03 6.9%
6 12.3 02 -3.0 13 10.0 20.0 0.0 6 154 38 4.6 7.0%
7 9.6 205 1.0 14 10.0 30.0 0.0 7 139 6.1 25 5.9%

Table 4 The incoming flow states of the blunt cone test cases and the
NRMSE of the aerothermal loads predicted by ED-ResNet

Case Labels Mas, o/° p/e T./K P,/ Pa NRMSE
1 10.0 0 0 69 121.6 10.0%
2 12.3 0.2  -3.0 69 121.6 10.7%
3 15.2 129 2.6 51 73.9 12.9%
4 13.7 7.6  -0.7 75 139.1 12.3%

Figure 8 compares the ED-ResNet prediction results, Eckert’s Reference Temperature Method (ERT)
prediction results and RANS calculation results for the aerothermal loads on the surface centerline (shown
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in Figure 1(a)) of the hypersonic double-ellipsoid test case 5. The results show that when dealing with
unknown geometric shapes, the aerothermal load distribution predicted by ED-ResNet still highly agree
with the RANS calculation results, compared to the ERT method, the NRMSE still possessing a significant
accuracy advantage. The above results demonstrate the excellent global geometric shape generalization

capability of the ED-ResNet .
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Figure.5 Extrapolation test case 3, a comparison of the
aerothermal results predicted by ED-ResNet using 4
training samples and those calculated by RANS.
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Figure.6 Double-ellipsoid test case 1, a comparison of the
aerothermal contours predicted by ED-ResNet using hypersonic
ellipsoid training samples and those calculated by RANS
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Figure 8 Comparison of ED-ResNet prediction results, ERT
prediction results, and RANS calculation results for the
aerothermal loads of hypersonic double-ellipsoid test case 5

calculated by RANS

4. Conclusion

For the aerothermal prediction of hypersonic double-ellipsoid with variable inflow states, ED-ResNet
demands only 4 training samples, and the NRMSE of the predicted aerothermal load is less than 7%.
Compared with POD+kriging, the NRMSE of aerothermal load predicted by ED-ResNet can be reduced by
more than 2 orders of magnitude, which is 1/20 of the NRMSE of aerothermal load predicted by OD-
ResNet. The embedding of the Euler equation has brought powerful small sample modeling capability to
ED-ResNet. For the aerothermal prediction of variable geometric shapes, ED-ResNet achieves an
prediction NRMSE of less than 13%.The embedding of Euler equation enables ED-ResNet to have good
generalization ability for geometric shapes, and ED-ResNet can give relatively accurate predictions for
aerothermal loads of unknown geometric shapes. In future work, there is potential to build a large model
for aerothermal prediction based on the ED-ResNet. However, it is necessary to improve the ED-ResNet to
adapt to aerothermal prediction under conditions such as shock-boundary layer interference, transition, and
high-temperature chemical reactions, and other disturbances.
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