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Abstract  
With advancements in aerospace technology, artificial intelligence methods are increasingly being employed in flow 

field and aerodynamic computations, offering significantly higher computational efficiency compared to traditional 

CFD approaches. However, most existing studies on aerodynamic forces focus on using geometric conditions as inputs 

to guide calculations, paying limited attention to the generalization capabilities of models across diverse flow regimes. 

This study investigates the potential and practical applicability of deep learning methods for computing distributed 

aerodynamic and thermal effects on surfaces in rarefied flows. A deep learning-based surrogate model is proposed to 

directly characterize the relationship between near-wall flow states and the local distribution of aerodynamic and 

thermal effects on surfaces. Furthermore, a trainable weighted subnetwork and a cascaded model output structure are 

incorporated to improve the model's generalization capability and interpretability across a wider range of flow regimes 

and enhance the model's prediction accuracy for regions with high thermal flux and aerodynamic forces. The proposed 

model successfully predicts aerodynamic and thermal effects in flows with large Knudsen numbers ranges, offering 

accurate and interpretable results that provide valuable insights for further research and development. 
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Introduction 

Accurately predicting surface aerodynamic and thermal effects is essential for the design of thermal 

protection systems, material selection, and overall performance evaluation in applications such as 

hypersonic flight, spacecraft re-entry, and landing. Among the commonly used numerical methods, the 

Navier-Stokes (NS) equations offer relatively high computational efficiency but are unsuitable for rarefied 

flow regimes. In contrast, the Direct Simulation Monte Carlo (DSMC) method provides accurate solutions 

for rarefied flows but incurs prohibitively high computational costs, limiting its feasibility for engineering 

optimization and real-time prediction[1–3]. 

In recent years, deep learning methods have garnered significant attention in fluid mechanics due to 

their potential to replace various aspects of traditional physical models by learning dependencies from high-

fidelity experimental and simulation data. These methods have been successfully applied to predict flow 

states[4,5], aerodynamic forces[6,7], and heat flux distributions[8,9], substantially improving 

computational efficiency. 

However, most existing studies remain constrained by geometric priors, such as signed distance 

functions, or are limited to fixed inflow conditions, resulting in poor generalization and reduced adaptability 

to complex flow environments. To address these limitations, researchers have explored predictive modeling 

approaches based on local flow field parameters., Xu et al. [10]proposed that local wall-normal heat flux 

could be represented as a nonlinear function of nearby wall shear stress and wall pressure fluctuations using 

a multi-layer neural network. They employed a convolutional neural network (CNN) to predict local heat 

flux and leveraged gradient maps to analyze spatial correlations between heat flux and surrounding flow 

features. Erwan et al. [11] introduced a data-driven wall function estimation method, training a fully 

connected feedforward neural network to infer wall friction from local flow conditions. Upon integration 

into an industrial CFD solver, their model significantly improved wall friction predictions in Reynolds-

Averaged Navier-Stokes (RANS) simulations. 

Building on this foundation, the present study further investigates deep learning models driven by local 

flow field parameters. By simplifying the underlying relationships, we develop a surrogate model that 
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directly maps the near-wall flow state to local aerodynamic and thermal effects. Additionally, a trainable 

weighted sub-network is introduced to enhance the model’s generalization capability across a broader range 

of flow regimes while improving interpretability. Furthermore, a hierarchical output processing structure, 

informed by predicted physical phenomena, is designed to improve both prediction accuracy and 

robustness. The proposed model accurately predicts aerodynamic and thermal effects across a wide range 

of Knudsen numbers, providing valuable insights for future research and applications. 

Method  

This study investigates the application of deep learning methods to learn from classical CFD algorithm 

results, leveraging these relationships to enhance prediction efficiency. The development of the surrogate 

model begins with the selection of a high-fidelity (HiFi) dataset. The dataset utilized in this study is 

generated using the PWS developed at Beihang University, a DSMC-based approach that has been validated 

for both aerodynamic and thermal computations[12]. The dataset comprises flow fields and aerodynamic 

effects resulting from multiple engine jets impinging on a flat plate in a vacuum environment at varying 

distances. From these computational results, flow variables at nodes positioned a certain distance from the 

wall are extracted, along with their corresponding heat flux density and shear stress components along the 

y and z axes on the wall, as illustrated in Figure 1(a). A deep learning model is then trained to infer the 

latter from the former. 

 

Figure 1 Use of near-wall data for train and prediction: a. input–output datasets extracted at a given position in the 

flow from HiFi simulations, b. the simplified model for local nondimensionalization 

To minimize the influence of far-field conditions and surface geometry, thereby enhancing the model’s 

generalization capability, the proposed deep learning approach relies on a set of input variables, Ip, obtained 

from the first off-wall node: 
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 1,2,3i =  (2) 

where U represents velocity, ρ is density, p is pressure, T is temperature, and Ma is the Mach number. Based 

on the assumption that aerodynamic heating effects are strongly correlated with Ip at the first off-wall node, 

a simplified model is constructed, as shown in Figure 1(b). This model simplifies the aerodynamic process 

as the interaction between a uniform inflow (characterized by Ip) and the bottom surface of a micro body. 

To ensure consistency across different flow regimes, the flow parameters are nondimensionalized using the 

density ρ and temperature T from the inlet conditions of the micro-body: 
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Furthermore, considering the symmetry of the shear stress components in the y and z directions with 

respect to flow parameters, a local coordinate system is established, as depicted in Figure 1(b). The 

extracted Ip serve as the input for the neural networks. The fundamental architecture of the neural network 

is illustrated in Figure 2(a). A trainable weighted subnetwork is introduced to assign weight coefficients to 

each input channel based on the provided input conditions, enabling the neural network output to be 

expressed as: 

 ( )( )( )1 p poutput M W I I= +  (4) 

where W represents the weighting subnetwork, and M denotes an MLP, in this study, both of them are 

implemented as fully connected neural networks, achieving an optimal training accuracy. 

 

Figure 2 neural network structures: a. the trainable weighted subnetwork enhanced (TWSE) model, b. the model using 

a cascading structure 

Additionally, recognizing that wall-bounded aerodynamic effects directly reflect the near-wall flow 

state, a serial output structure is designed, as illustrated in Figure 2(b). The predictions of the first-stage 

network for wall aerodynamic effects are incorporated into the second-stage model as updated input 

variables Ip’: 
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 (5) 

Two separate deep learning models are constructed to predict the wall shear stress components fy and heat 

flux density q, respectively. The role of the two subnetworks is further analysed. The loss function used for 

training is the mean squared error (MSE). To mitigate overfitting and assess the model’s generalization 

capability for unseen conditions, the dataset is partitioned into training, validation, and test sets according 

to the corresponding flow conditions. 
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Results 

In this study, the three models were each trained for 10,000 steps on a GPU. The training, validation, and 

test datasets encompass flow states near the plate, covering continuum, transitional, and rarefied flow 

regimes. Taking the test case shown in Figure 3 as an example, the region of maximum heat flux density is 

primarily aligned with the engine nozzle and exhibits continuum flow characteristics. As the engine jets 

expand into the vacuum and interact, the flow transitions into a regime with a Knudsen number approaching 

1, eventually diffusing outward into a rarefied flow state. 

Figure 3 presents the model predictions for a representative test case, demonstrating strong agreement 

between the deep learning model and the DSMC computational results for both shear stress components 

and heat flux density. The error distribution of the shear stress components is relatively uniform, with larger 

errors concentrated in regions where multiple engine jets interact. Table 1 summarizes the prediction errors 

across the entire test dataset, revealing that the three models exhibit similar average errors in shear force 

predictions. This may be attributed to the increased complexity of the flow conditions in jet interaction 

regions compared to regions dominated by a single nozzle, suggesting that higher-resolution grids or 

enhanced neural network input features may be required to improve accuracy. 

 

Figure 3 prediction results for aerodynamics and thermal effects: a-d. results for fy, e-h. results for q, i-k. absolute error 

for fy prediction, k-m. absolute error for q prediction 

            

            

         

         

      
  

       

       
      

      
      

                                           

mailto:hbj@buaa.edu.cn


Proceedings of the 1st international Symposium on AI and Fluid Mechanics 

Paper No S2 P8 

*Corresponding Author, He Bijiao hbj@buaa.edu.cn 

In contrast, the prediction errors for heat flux density are primarily concentrated at peak values, as 

illustrated in Figure 3. A clear distinction in predictive accuracy is observed among the three models, with 

the serial-structured model achieving the highest accuracy, while the baseline model performs the worst. 

The results in Table 1 further validate this observation, demonstrating that both enhanced model 

architectures enable a more precise representation of local flow conditions. Given the relatively small 

proportion of continuum-flow nodes in the test dataset, these findings suggest that the proposed 

improvements enhance the model’s ability to capture variations in flow states. 

Table 1 prediction performances for aerodynamics and thermal effects 

 DSMC Baseline model 
Model with weighted 

subnetwork 

Model with serial 

structure 

fy error (N/m2) — 1.63 1.61 1.59 

q error (W/m2) — 2518 2459 2445 

For the serial-structured model, additional validation of its fy predictions is provided in Figure 4(a), 

which presents results along the z = 0 and y = 0 axes. Considering the symmetry of the heat flux distribution 

observed in Figure 3, only the z = 0 axis is used for comparison in Figure 4(b). The results indicate that the 

model successfully captures both peak values and lower-magnitude variations for fy and q, further 

demonstrating the effectiveness of the proposed deep learning approach. 

 

Figure 4 prediction of aerodynamics and thermal effects along z = 0 and y = 0 axes 

Conclusion  

This study investigates the potential of deep learning methods for computing surface-distributed 

aerodynamic and thermal effects. A deep learning-based surrogate model is developed, incorporating local 

nondimensionalization and structural enhancements to predict aerodynamic and thermal effects based on 

local flow field characteristics. The model's predictions on the test dataset show strong agreement with 

DSMC results, demonstrating its ability to accurately capture key local flow features and validating the 

feasibility of using deep learning for local aerodynamic effects prediction. The results for local heat flux 

prediction indicate that the proposed weighted subnetwork and serial model structure enhance the model’s 

ability to identify and adapt to local flow conditions. However, these improvements have a limited impact 

on the accuracy of shear stress predictions, suggesting that higher-resolution computational data or further 

refinements in the model’s learning capabilities may be required to improve prediction accuracy in complex 

flow regimes. These findings provide valuable insights for future advancements in deep learning-based 

aerodynamic and thermal modeling. 
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