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Abstract

With advancements in acrospace technology, artificial intelligence methods are increasingly being employed in flow
field and aerodynamic computations, offering significantly higher computational efficiency compared to traditional
CFD approaches. However, most existing studies on aerodynamic forces focus on using geometric conditions as inputs
to guide calculations, paying limited attention to the generalization capabilities of models across diverse flow regimes.
This study investigates the potential and practical applicability of deep learning methods for computing distributed
aerodynamic and thermal effects on surfaces in rarefied flows. A deep learning-based surrogate model is proposed to
directly characterize the relationship between near-wall flow states and the local distribution of aerodynamic and
thermal effects on surfaces. Furthermore, a trainable weighted subnetwork and a cascaded model output structure are
incorporated to improve the model's generalization capability and interpretability across a wider range of flow regimes
and enhance the model's prediction accuracy for regions with high thermal flux and aerodynamic forces. The proposed
model successfully predicts aerodynamic and thermal effects in flows with large Knudsen numbers ranges, offering
accurate and interpretable results that provide valuable insights for further research and development.
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Introduction

Accurately predicting surface aerodynamic and thermal effects is essential for the design of thermal
protection systems, material selection, and overall performance evaluation in applications such as
hypersonic flight, spacecraft re-entry, and landing. Among the commonly used numerical methods, the
Navier-Stokes (NS) equations offer relatively high computational efficiency but are unsuitable for rarefied
flow regimes. In contrast, the Direct Simulation Monte Carlo (DSMC) method provides accurate solutions
for rarefied flows but incurs prohibitively high computational costs, limiting its feasibility for engineering
optimization and real-time prediction[1-3].

In recent years, deep learning methods have garnered significant attention in fluid mechanics due to
their potential to replace various aspects of traditional physical models by learning dependencies from high-
fidelity experimental and simulation data. These methods have been successfully applied to predict flow
states[4,5], aerodynamic forces[6,7], and heat flux distributions[8,9], substantially improving
computational efficiency.

However, most existing studies remain constrained by geometric priors, such as signed distance
functions, or are limited to fixed inflow conditions, resulting in poor generalization and reduced adaptability
to complex flow environments. To address these limitations, researchers have explored predictive modeling
approaches based on local flow field parameters., Xu et al. [10]proposed that local wall-normal heat flux
could be represented as a nonlinear function of nearby wall shear stress and wall pressure fluctuations using
a multi-layer neural network. They employed a convolutional neural network (CNN) to predict local heat
flux and leveraged gradient maps to analyze spatial correlations between heat flux and surrounding flow
features. Erwan et al. [11] introduced a data-driven wall function estimation method, training a fully
connected feedforward neural network to infer wall friction from local flow conditions. Upon integration
into an industrial CFD solver, their model significantly improved wall friction predictions in Reynolds-
Averaged Navier-Stokes (RANS) simulations.

Building on this foundation, the present study further investigates deep learning models driven by local
flow field parameters. By simplifying the underlying relationships, we develop a surrogate model that
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directly maps the near-wall flow state to local aerodynamic and thermal effects. Additionally, a trainable
weighted sub-network is introduced to enhance the model’s generalization capability across a broader range
of flow regimes while improving interpretability. Furthermore, a hierarchical output processing structure,
informed by predicted physical phenomena, is designed to improve both prediction accuracy and
robustness. The proposed model accurately predicts aerodynamic and thermal effects across a wide range
of Knudsen numbers, providing valuable insights for future research and applications.

Method

This study investigates the application of deep learning methods to learn from classical CFD algorithm
results, leveraging these relationships to enhance prediction efficiency. The development of the surrogate
model begins with the selection of a high-fidelity (HiFi) dataset. The dataset utilized in this study is
generated using the PWS developed at Beihang University, a DSMC-based approach that has been validated
for both aerodynamic and thermal computations[12]. The dataset comprises flow fields and aerodynamic
effects resulting from multiple engine jets impinging on a flat plate in a vacuum environment at varying
distances. From these computational results, flow variables at nodes positioned a certain distance from the
wall are extracted, along with their corresponding heat flux density and shear stress components along the
y and z axes on the wall, as illustrated in Figure 1(a). A deep learning model is then trained to infer the
latter from the former.
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Figure 1 Use of near-wall data for train and prediction: a. input—output datasets extracted at a given position in the
flow from HiFi simulations, b. the simplified model for local nondimensionalization
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To minimize the influence of far-field conditions and surface geometry, thereby enhancing the model’s
generalization capability, the proposed deep learning approach relies on a set of input variables, 1,, obtained
from the first off-wall node:
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where U represents velocity, p is density, p is pressure, 7 is temperature, and Ma is the Mach number. Based
on the assumption that aerodynamic heating effects are strongly correlated with 1, at the first off-wall node,
a simplified model is constructed, as shown in Figure 1(b). This model simplifies the aerodynamic process
as the interaction between a uniform inflow (characterized by 1,) and the bottom surface of a micro body.
To ensure consistency across different flow regimes, the flow parameters are nondimensionalized using the
density p and temperature T from the inlet conditions of the micro-body:
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Furthermore, considering the symmetry of the shear stress components in the y and z directions with
respect to flow parameters, a local coordinate system is established, as depicted in Figure 1(b). The
extracted /, serve as the input for the neural networks. The fundamental architecture of the neural network
is illustrated in Figure 2(a). A trainable weighted subnetwork is introduced to assign weight coefficients to
each input channel based on the provided input conditions, enabling the neural network output to be
expressed as:
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where W represents the weighting subnetwork, and M denotes an MLP, in this study, both of them are
implemented as fully connected neural networks, achieving an optimal training accuracy.
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Figure 2 neural network structures: a. the trainable weighted subnetwork enhanced (TWSE) model, b. the model using
a cascading structure

Additionally, recognizing that wall-bounded aerodynamic effects directly reflect the near-wall flow
state, a serial output structure is designed, as illustrated in Figure 2(b). The predictions of the first-stage
network for wall aerodynamic effects are incorporated into the second-stage model as updated input
variables /,:
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Two separate deep learning models are constructed to predict the wall shear stress components f, and heat
flux density ¢, respectively. The role of the two subnetworks is further analysed. The loss function used for
training is the mean squared error (MSE). To mitigate overfitting and assess the model’s generalization
capability for unseen conditions, the dataset is partitioned into training, validation, and test sets according
to the corresponding flow conditions.
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Results

In this study, the three models were each trained for 10,000 steps on a GPU. The training, validation, and
test datasets encompass flow states near the plate, covering continuum, transitional, and rarefied flow
regimes. Taking the test case shown in Figure 3 as an example, the region of maximum heat flux density is
primarily aligned with the engine nozzle and exhibits continuum flow characteristics. As the engine jets
expand into the vacuum and interact, the flow transitions into a regime with a Knudsen number approaching
1, eventually diffusing outward into a rarefied flow state.

Figure 3 presents the model predictions for a representative test case, demonstrating strong agreement
between the deep learning model and the DSMC computational results for both shear stress components
and heat flux density. The error distribution of the shear stress components is relatively uniform, with larger
errors concentrated in regions where multiple engine jets interact. Table 1 summarizes the prediction errors
across the entire test dataset, revealing that the three models exhibit similar average errors in shear force
predictions. This may be attributed to the increased complexity of the flow conditions in jet interaction
regions compared to regions dominated by a single nozzle, suggesting that higher-resolution grids or
enhanced neural network input features may be required to improve accuracy.

Baseline Model TWSE Model Cascading Model DSMC
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Figure 3 prediction results for aerodynamics and thermal effects: a-d. results for f;, e-h. results for ¢, i-k. absolute error
for f; prediction, k-m. absolute error for ¢ prediction
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In contrast, the prediction errors for heat flux density are primarily concentrated at peak values, as
illustrated in Figure 3. A clear distinction in predictive accuracy is observed among the three models, with
the serial-structured model achieving the highest accuracy, while the baseline model performs the worst.
The results in Table 1 further validate this observation, demonstrating that both enhanced model
architectures enable a more precise representation of local flow conditions. Given the relatively small
proportion of continuum-flow nodes in the test dataset, these findings suggest that the proposed
improvements enhance the model’s ability to capture variations in flow states.

Table 1 prediction performances for aerodynamics and thermal effects

DSMC  Baseline model Model with weighted Model with serial

subnetwork structure
f, error (N/m?) — 1.63 1.61 1.59
g error (W/m?)  — 2518 2459 2445

For the serial-structured model, additional validation of its f, predictions is provided in Figure 4(a),
which presents results along the z= 0 and y = 0 axes. Considering the symmetry of the heat flux distribution
observed in Figure 3, only the z = 0 axis is used for comparison in Figure 4(b). The results indicate that the
model successfully captures both peak values and lower-magnitude variations for f, and ¢, further
demonstrating the effectiveness of the proposed deep learning approach.
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Figure 4 prediction of aerodynamics and thermal effects along z = 0 and y = 0 axes

Conclusion

This study investigates the potential of deep learning methods for computing surface-distributed
aerodynamic and thermal effects. A deep learning-based surrogate model is developed, incorporating local
nondimensionalization and structural enhancements to predict aerodynamic and thermal effects based on
local flow field characteristics. The model's predictions on the test dataset show strong agreement with
DSMC results, demonstrating its ability to accurately capture key local flow features and validating the
feasibility of using deep learning for local aerodynamic effects prediction. The results for local heat flux
prediction indicate that the proposed weighted subnetwork and serial model structure enhance the model’s
ability to identify and adapt to local flow conditions. However, these improvements have a limited impact
on the accuracy of shear stress predictions, suggesting that higher-resolution computational data or further
refinements in the model’s learning capabilities may be required to improve prediction accuracy in complex
flow regimes. These findings provide valuable insights for future advancements in deep learning-based
aerodynamic and thermal modeling.
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