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Abstract. Inverse problems aim to estimate hidden parameters of a mathematical model using observed
data. Deep learning models, particularly physics-informed neural networks (PINNs), have shown great
potential for solving such problems. PINNs integrate physical laws into the loss function, ensuring
solutions match observed data while adhering to governing physical principles, enhancing accuracy and
reliability. Typically, PINNs predict unavailable variables through physics-informed loss functions. This
work explores a different scenario: approximating the function m = g(k), where k are characteristic
parameters to describe m. However, m is not explicitly represented in the available data. Instead, a
known physical relation u = f'(x, ¢, m), expressed by a partial differential equation (PDE), and data
for u are available. To train the network, a custom loss function incorporates the PDE solution via a
differentiable numerical solver, enabling gradient computation throughout the PDE solution process for
effective training. This method has been applied to three flow problems, namely the Burgers equation,
the Kovasznay flow and the lid-driven cavity flow, demonstrating accurate parameter identification and
robustness. Potential applications include learning material laws and virtual sensing, where indirect
measurements infer critical system parameters.

1. Introduction

In several areas of science and engineering such as fluid mechanics, the accurate recovery of hidden
multi-dimensional model parameters from indirect observations are a common issue [ 1]. These so-called
inverse problems can be formalized as solving an equation in the form

u = f(m), (D

where u ¢ Y are the observed data and m <X are the model parameters to determine. The mapping
f X Xis the forward operator [1]. To solve this inverse problem, several strategies can be em-
ployed. Traditional techniques such as regularization methods solve the forward problem multiple times
in order to get the required information for the inverse problem. Lin et al. [2] estimated the viscosity
of a power-law fluid combining temperature and pressure measurements, and a numerical model of the
investigated system. The numerical model describes the viscous heating and heat convection used for the
inverse analysis of the viscosity. A further regularization-based application for solving an inverse fluid
flow problem was shown by Ouaissa et al. [3]. The authors presented a formulation for determining the
fluid velocity and the flux over a part of the boundary by introducing given measurements on the remain-
ing part of the inverse Cauchy problem governed by Stokes equation. Using the adjoint gradient method
to solve the derived regularized solution, the proposed method is highly efficient. Kontogiannis et al. [4]
solved the inverse Navier—Stokes problem for the joint velocity field reconstruction and boundary seg-
mentation of noisy flow velocity images. In their work, the authors used a Bayesian framework with
Gaussian random fields to regularize the problem and to estimate the uncertainties of the unknowns by a
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quasi-Newton method. Their outcomes indicate that the method successfully reconstructs and segments
noisy images highly efficient.

Recent works have underlined the potential of using physics-informed neural networks (PINNs)[5]
for inverse problems. Raissi et al. [5] already showed the use of PINNs for inverse problems in their ini-
tial work by approximating unknown parameters of the Navier-Stokes equations using noisy data. In one
of their followed works, Raissi et al. [6] not only showed to estimate system parameters but also the pos-
sibility to predict the velocity and pressure field based on a given passive scalar. Jagtap et al. [7] applied
the PINN framework for inverse problems in supersonic flows. In addition to the compressible Euler
equations, the authors enforced the entropy conditions to obtain viscosity solutions. Furthermore, the
authors reported that domain decomposition allows to use neural networks in each subdomain yielding
convergence enhancement in case of high-gradient solutions as for shock problems. Bai et al. [8] gave
an overview on strategies to improve the performance of PINNs for inverse problems. They combined
adaptive activation function, loss function and sampling strategies. Tests on parameter identification
in different partial differential equations (PDEs) such as Burgers equation and Navier-Stokes equation
showed that their proposed strategy is able to reduce the relative error of the unknown parameters by up
to two orders of magnitude compared to vanilla PINNs. Karnakov et al. [9] pointed out several draw-
backs of using PINNs, in particular for inverse problems motivating for the development of a method
based on optimizing a discrete loss (ODIL). The authors pointed out that PINNs often cannot match con-
ventional numerical methods for well-posed forward PDE problems due to their high computational cost,
which stems from evaluating a dense network at every collocation point and lacking the sparse structures
typical of grid-based methods. They also do not incorporate physically motivated numerical techniques
(e.g., upwind schemes) that can expedite convergence and ensure stability. Moreover, higher-order PDEs
pose additional challenges because nested automatic differentiation grows exponentially with the order
of derivatives, and many proposed architectural improvements do not guarantee a universal improvement
in accuracy or training speed. ODIL minimizes a cost function for the discrete forms of PDEs using
gradient-based and Newton’s methods. The results of Karnakov et al. [9] showed that ODIL outperforms
PINNs in terms of computational efficiency and accuracy on several inverse and ill-posed problems.

The present work addresses not only the estimation of model parameters, denoted as m, from ob-
served data but also the simultaneous learning of an operator function g that maps a given input parameter
set k£ to m in a single step. The operator function g is modeled using a neural network, represented as

m = go(k), )

where gg denotes the operator function depending on the neural network weights 6. The inverse problem
is given by

u=f(x 1 m), 3)

where u is the observed data and_f~ describes the underling physical system in form of a PDE. To en-
able the neural network training, the forward solution of /" is integrated into the loss function using
standard numerical schemes. Crucially, this approach requires the forward solver to be differentiable.
Differentiable solvers facilitate the computation of gradients of the solution with respect to the problem
parameters, enabling the use of common gradient-based optimization methods widely adopted in ma-
chine learning. For instance, List et al. [10] demonstrated the utility of differentiable fluid solvers in
learning turbulence models from direct numerical simulation (DNS) data. In their approach, a convolu-
tional neural network (CNN) predicts a corrective forcing term, and the integration with a differentiable
solver allows the model to achieve excellent agreement with a posteriori DNS data validation. Further
applications of differentiable flow solvers have been explored in [11, 12, 13].

The present study builds on this concept by combining a neural network to predict an unknown
parameter m based on input features, while integrating a differentiable solver within the network loss
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function. This approach eliminates the need for direct training data for m, as the network is trained by
solving the inverse problem directly. The work is structured as follows: In Section 2, the methodology
and the design of the ML framework is described. Section 3 contains the application of the methodology
on different settings namely the Burgers equation, the Kovasznay flow and the lid driven cavity problem.
In section 4, the results are discussed, and an outlook on further developments of the methodology is
provided.

2. Methodology

2.1. Governing equations

To show the integration of neural networks with differentiable solvers, an inverse problem is formulated
to estimate diffusion parameters, specifically the viscosity v, based on observable data. Two problem
settings are considered: the viscous Burgers equation
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and the non-dimensional 2D incompressible Navier-Stokes equations:
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where the Reynolds number Re is defined as:
UL
Re= — (6)
v

2.2.  Viscosity model

In order to demonstrate the ability of the method to learn material models, the well-known formulation
of Sutherland describing the temperature dependence of the dynamic viscosity u is used as a reference
value. The formulation is given by

I 3/2 IO + S (7)

M= o )
To T7+S

where uo is the dynamic viscosity at the reference temperature 7p and S is an effective temperature
known as the Sutherland constant. For the present study, a binary mixture of gases namely nitrogen (N2)
and oxygen (O,) in a ratio of 80/20 is used. The mixture dynamic viscosity umix is calculated based on
the mixture rule of Wilke [14]:
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where x;, M; and u; are the model fraction, molar mass and dynamic viscosity of component i. To
calculate the kinematic viscosity v required to determine Re and consequently to solve the considered
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governing equations, the density of the mixture pmix is calculated by the ideal gas law and the mixture
molar mass according to:

AL >
P = 2 o with My = XM, (10)
=1

where p is the system pressure specified with 1 bar and R is the universal gas constant. The data for the
application examples in the present study are generated using a temperature range from 300K to 5S00K.

2.3.  Model setup

The objective is to train a neural networkNe to approximate the material model for v as a function of
input feature, in the present case the temperature 7', expressed as v =Ne (7). In the considered problem
settings, the observable data consists of u for the Burgers equation and the velocity components [u, v] for
the Navier-Stokes equations. To train the neural network, an appropriate loss function must be defined.
This is achieved by solving the governing PDEs using standard numerical schemes, where the neural
network output serves as a parameter for computing the field values. The loss function is formulated
based on the mean absolute error (MAE) between the predicted and true values of u or [u, v], depending
on the application case. By ensuring that the numerical solver of the PDE is differentiable, the method
enables the backpropagation of optimization gradients through multiple solver steps and neural network
evaluations, facilitating efficient training of the network. This approach ensures that the learned param-
eter model is consistent with the underlying physics of the system. Fig. 1 shows a schematic illustration
of the ML framework. The entire machine learning framework, including the numerical solver, is imple-
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Figure 1: Illustration of the ML framework.

mented using PyTorch, which facilitates the use of automatic differentiation (AD) for efficient gradient
computation. To reconstruct the viscosity model, a neural network with two hidden layers, each con-
taining 24 neurons, is employed. The hidden layers utilize the tanh activation function, while the output
layer applies the sigmoid activation function. The use of the sigmoid function in combination with an
a priori scaling ensures that the predicted viscosity values remain within a bounded range, preventing
the neural network from generating values unsuitable for the numerical solver used in the loss function
(e.g., predicting turbulent flow while using a solver designed for laminar flow). However, this approach
assumes prior knowledge of the expected viscosity range, requiring an appropriate scaling function for
accurate predictions. The data is split into train and test set using a ratio of 80/20 throughout all consid-
ered examples. A learning rate scheduler using a factor of 0.999 in each epoch is utilized. The training
process covers 300 epochs using the Adam optimizer. A more detailed description of the numerical
schemes used to solve the governing PDE:s is provided for each application example in the following
section.
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3. Applications

To demonstrate the performance of the methodology, three application examples are investigated namely
the Burgers equation, the Kovasznay flow and the lid driven cavity flow. Details about the numerical
schemes for designing the differentiable solver, the generation of the required data and the results ob-
tained are shown in the following.

3.1. Burgers equation
Data generation. The Burgers equation is considered with the initial conditions

u (x, 0) = sin (7x), O0<x<1
and homogeneous boundary conditions
u0,0=u(l,1), t>1.

The required data set for training and testing is generated by the analytical solution using the Cole-Hopf
transformation [15, 16] given by

Zoo
nAnpsin (nmx) exp —vn2r2t
u(x, t) =2nv L I (11a)
Ao+ = nAncos (nmx) exp (—vn?m?t)
with the Fourier coefficients
" ’
1 —
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.1 gxp (27v)™![cos (mx) — 1] " cos (nmx)dx /= 0.

To obtain values of Re to sustain stable results of the numerical solver, the characteristic velocity U in
Eq. 6 is setto 103 ms™L.

Numerical solver. The numerical solution of Eq. 4 follows standard discretization techniques commonly
used for this type of equation. The diffusion term is approximated using a central difference scheme,
while a first-order upwind scheme is employed for the convection term. For temporal discretization,
the Crank-Nicolson scheme is applied, providing a balance between accuracy and stability. The compu-
tational domain is discretized into 50 spatial cells and 200 time steps, ensuring adequate resolution to
capture the dynamics of the solution.

Results. To evaluate the accuracy of the differentiable numerical solver, the viscous Burgers’ equation
is solved for an arbitrary viscosity value, comparing the numerical solution with the analytical solution.
Figure 2 (a) illustrates this comparison, demonstrating a high level of agreement between both solutions.
The results confirm that the numerical solver accurately captures the underlying physics of the problem,
ensuring a reliable basis for training the ML model. In Figure 2 (b), the performance of the ML model
is assessed by comparing the true viscosity values with the predicted values obtained from the trained
network. The results show that the predicted values align closely with the true values, showing a slight
overprediction of the true values probably caused by deviations between the analytical and numerical
solution. Nevertheless, the results indicate that the ML model effectively learns the underlying mapping
between input features and viscosity, successfully solving the inverse problem.
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Figure 2: Results of the Burgers equation application case: (a) comparison between numerical solver
and analytical solution for v = 0.027 m?2/s, (b) predicted vs. true v in m?2/s.

3.2.  Kovasznay flow

Data generation. The Kovasznay flow is a well-known analytical solution of the 2D incompressible
Navier-Stokes equations for steady-state laminar flow behind a periodic array of vortices. It is particu-
larly useful as a benchmark for validating CFD solvers. Kovasznay found an analytical solution for the
velocity and pressure fields of this specific flow [17] given by

u(x,y) =1 — exp (Ax/L) cos 2—? (12a)
A
v(x»)= " exp (Ax/L)sin 2 (12b)
2z L
1
p(y)= = 11— exp (2m)] (120)
where 1 N
A= E Re — Re? + 1672 (124d)

is a decay parameter dependent on Re. The setting of the original paper where the distance between the

vortices is used as the characteristic length L for non-dimensionalization. The characteristic velocity is
set to 1073 ms™ to ensure that the Reynolds number remains within the range where the flow is laminar
and the analytical solution is valid.

Numerical solver. The numerical solution of the Navier-Stokes equations is based on finite volume
discretization. A first-order scheme is employed for the convection term to ensure numerical stability,
while a second-order scheme is used for the diffusion term to improve accuracy. The pressure-velocity
coupling required for solving the incompressible Navier-Stokes equations is handled through an iterative
solver. The computational grid consists of 42 cells in both the x and y directions, providing a relatively
coarse resolution. However, this resolution is sufficient to accurately capture the vortex structures, en-
suring that the numerical solution remains consistent with the analytical Kovasznay flow solution, thus
enabling an effective loss formulation that integrates both numerical and analytical data.
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Results. Figure 3 (a) illustrates the velocity field computed by the numerical solver for an arbitrary vis-
cosity value, demonstrating the solver’s ability to accurately capture the flow characteristics. Comparing
the numerical results with the analytical values leads to a mean relative L2 error of 0.002 for # and 0.011
for v, respectively. The ML-predicted viscosity values are compared against the true values as shown
in Figure 3 (b). As the results indicate, a strong correlation between predicted and true viscosity values
is obtained proving that the proposed method is able to extract the required features from the analytical
solution although the numerical solver relies on a relativly rough computational resolution.
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Figure 3: Results of the Kovasznay flow application case: (a) u field determined by the differentiable
numerical solver for v = 0.025 m2/s, (b) predicted vs. true v in m2/s.

3.3.  Lid-driven cavity

Data generation. For the well-known lid-driven cavity example, unlike the previous cases, an analytical
solution is not available. Therefore, the dataset is generated using the same numerical solver that is
integrated into the ML framework. However, to better simulate real-world measurement conditions and
account for potential uncertainties, Gaussian noise is added to the generated data, introducing variability

that mimics experimental observations. Similar to the previous examples, Re is bounded by setting U to
5103 ms™

Numerical solver. The numerical solver as briefly described in the Kovasznay flow application is also
used for the lid-driven cavity case. To keep the computational time during training within reasonable
limits, the computational mesh has 51 cells in both the x and y directions. A validation of the numerical
results with the reference data of Ghia et al. [ 18] showed acceptable accordance.

Results. To demonstrate the ability of the differentiable fluid solver to accurately predict the flow, the
flow field of the lid-driven cavity of an arbitrary viscosity values is shown in Figure 4 (a). Since no
analytical solution exists for this case, the dataset used to train the ML model was generated using the
same numerical solver adding 5% Gaussian noise to simulate real-world measurement uncertainties.
Figure 4 (b), the ML-predicted viscosity values are compared against the true values. The results form
an almost perfect diagonal line, indicating that the model accurately reconstructs viscosity from the noisy
input data. This strong correlation suggests that the ML model effectively learns the underlying viscosity
distribution, even in the presence of noise, demonstrating its robustness and reliability.
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Figure 4: Results of the lid-driven cavity application case: (a) u field determined by the differentiable
numerical solver for v = 0.01 m2/s, (b) predicted vs. true v in m2/s.

4. Discussion and conclusion

This study demonstrates the effectiveness of integrating differentiable solvers into ML frameworks for
solving inverse problems governed by PDEs. By using automatic differentiation, the proposed approach
enables direct optimization of neural network parameters through gradient-based methods, allowing for
robust parameter estimation without requiring direct observational data of the target parameters. The
method was applied to three different flow scenarios: the viscous Burgers’ equation, the Kovasznay flow,
and the lid-driven cavity problem. In each case, the neural network successfully learned the underly-
ing viscosity model based on observable velocity fields. The results for the Burgers’ equation showed
a high degree of agreement between the numerical and analytical solutions, confirming the accuracy of
the numerical solver. The Kovasznay flow results exhibited a nearly perfect correlation between the true
and predicted viscosity values, although the numerical solver relies on a relatively rough computational
resolution. Similarly, in the lid-driven cavity problem, the ML model demonstrated excellent predictive
performance, accurately reconstructing viscosity despite the introduction of Gaussian noise to simulate
measurement uncertainties. These findings highlight the potential of the proposed differentiable solver-
based learning framework for solving inverse problems in fluid dynamics and other PDE-driven systems.
Unlike purely data-driven models, this approach ensures that the learned parameters remain consistent
with underlying physical principles, improving generalizability and robustness. However, since the cur-
rent study focuses on the principle functionality of the approach, no measures concerning computational
speed have been taken. Although the differentiable solver is able to be executed on graphics processing
unit (GPU) along with the neural network training, the backpropagation through the solver by AD is still
time consuming. Thus, future work will focus on the use of adjoint methods to compute the gradients ef-
fectively. Furthermore, the application of the approach to real-world examples will be explored, focusing
on potential use cases such as learning material laws or virtual sensing. Overall, this study confirms that
integrating machine learning with differentiable solvers is a powerful and scalable approach for solving
inverse problems in computational physics.
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