
Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

→
∈ ∈

Differentiable Simulation for Inverse-like Fluid Flow Problems

Stefan Posch1, Marian Staggl2, Wolfgang Sanz2

1 Large Engines Competence Center, Graz, Austria

2 Institute of Thermal Turbomachinery and Machine Dynamics, Graz University of Technology, Austria

Corresponding author: Stefan Posch (stefan.posch@lec.tugraz.at)

Keywords: Differentiable simulation, neural network, Burgers equation, Kovasznay flow, lid-driven

cavity

Abstract. Inverse problems aim to estimate hidden parameters of a mathematical model using observed

data. Deep learning models, particularly physics-informed neural networks (PINNs), have shown great

potential for solving such problems. PINNs integrate physical laws into the loss function, ensuring

solutions match observed data while adhering to governing physical principles, enhancing accuracy and

reliability. Typically, PINNs predict unavailable variables through physics-informed loss functions. This

work explores a different scenario: approximating the function m = g(k), where k are characteristic

parameters to describe m. However, m is not explicitly represented in the available data. Instead, a

known physical relation u = f (x, t, m), expressed by a partial differential equation (PDE), and data

for u are available. To train the network, a custom loss function incorporates the PDE solution via a

differentiable numerical solver, enabling gradient computation throughout the PDE solution process for

effective training. This method has been applied to three flow problems, namely the Burgers equation,

the Kovasznay flow and the lid-driven cavity flow, demonstrating accurate parameter identification and

robustness. Potential applications include learning material laws and virtual sensing, where indirect

measurements infer critical system parameters.

1. Introduction
In several areas of science and engineering such as fluid mechanics, the accurate recovery of hidden

multi-dimensional model parameters from indirect observations are a common issue [1]. These so-called

inverse problems can be formalized as solving an equation in the form

u = f (m), (1)

where u Y are the observed data and m X are the model parameters to determine. The mapping

f : X Y is the forward operator [1]. To solve this inverse problem, several strategies can be em-

ployed. Traditional techniques such as regularization methods solve the forward problem multiple times

in order to get the required information for the inverse problem. Lin et al. [2] estimated the viscosity

of a power-law fluid combining temperature and pressure measurements, and a numerical model of the

investigated system. The numerical model describes the viscous heating and heat convection used for the

inverse analysis of the viscosity. A further regularization-based application for solving an inverse fluid

flow problem was shown by Ouaissa et al. [3]. The authors presented a formulation for determining the

fluid velocity and the flux over a part of the boundary by introducing given measurements on the remain-

ing part of the inverse Cauchy problem governed by Stokes equation. Using the adjoint gradient method

to solve the derived regularized solution, the proposed method is highly efficient. Kontogiannis et al. [4]

solved the inverse Navier–Stokes problem for the joint velocity field reconstruction and boundary seg-

mentation of noisy flow velocity images. In their work, the authors used a Bayesian framework with

Gaussian random fields to regularize the problem and to estimate the uncertainties of the unknowns by a

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

quasi-Newton method. Their outcomes indicate that the method successfully reconstructs and segments

noisy images highly efficient.

Recent works have underlined the potential of using physics-informed neural networks (PINNs)[5]

for inverse problems. Raissi et al. [5] already showed the use of PINNs for inverse problems in their ini-

tial work by approximating unknown parameters of the Navier-Stokes equations using noisy data. In one

of their followed works, Raissi et al. [6] not only showed to estimate system parameters but also the pos-

sibility to predict the velocity and pressure field based on a given passive scalar. Jagtap et al. [7] applied

the PINN framework for inverse problems in supersonic flows. In addition to the compressible Euler

equations, the authors enforced the entropy conditions to obtain viscosity solutions. Furthermore, the

authors reported that domain decomposition allows to use neural networks in each subdomain yielding

convergence enhancement in case of high-gradient solutions as for shock problems. Bai et al. [8] gave

an overview on strategies to improve the performance of PINNs for inverse problems. They combined

adaptive activation function, loss function and sampling strategies. Tests on parameter identification

in different partial differential equations (PDEs) such as Burgers equation and Navier-Stokes equation

showed that their proposed strategy is able to reduce the relative error of the unknown parameters by up

to two orders of magnitude compared to vanilla PINNs. Karnakov et al. [9] pointed out several draw-

backs of using PINNs, in particular for inverse problems motivating for the development of a method

based on optimizing a discrete loss (ODIL). The authors pointed out that PINNs often cannot match con-

ventional numerical methods for well-posed forward PDE problems due to their high computational cost,

which stems from evaluating a dense network at every collocation point and lacking the sparse structures

typical of grid-based methods. They also do not incorporate physically motivated numerical techniques

(e.g., upwind schemes) that can expedite convergence and ensure stability. Moreover, higher-order PDEs

pose additional challenges because nested automatic differentiation grows exponentially with the order

of derivatives, and many proposed architectural improvements do not guarantee a universal improvement

in accuracy or training speed. ODIL minimizes a cost function for the discrete forms of PDEs using

gradient-based and Newton’s methods. The results of Karnakov et al. [9] showed that ODIL outperforms

PINNs in terms of computational efficiency and accuracy on several inverse and ill-posed problems.

The present work addresses not only the estimation of model parameters, denoted as m, from ob-

served data but also the simultaneous learning of an operator function g that maps a given input parameter

set k to m in a single step. The operator function g is modeled using a neural network, represented as

m = gθ(k), (2)

where gθ denotes the operator function depending on the neural network weights θ. The inverse problem

is given by

u = f (x, t, m), (3)

where u is the observed data and f describes the underling physical system in form of a PDE. To en-

able the neural network training, the forward solution of f is integrated into the loss function using

standard numerical schemes. Crucially, this approach requires the forward solver to be differentiable.

Differentiable solvers facilitate the computation of gradients of the solution with respect to the problem

parameters, enabling the use of common gradient-based optimization methods widely adopted in ma-

chine learning. For instance, List et al. [10] demonstrated the utility of differentiable fluid solvers in

learning turbulence models from direct numerical simulation (DNS) data. In their approach, a convolu-

tional neural network (CNN) predicts a corrective forcing term, and the integration with a differentiable

solver allows the model to achieve excellent agreement with a posteriori DNS data validation. Further

applications of differentiable flow solvers have been explored in [11, 12, 13].

The present study builds on this concept by combining a neural network to predict an unknown

parameter m based on input features, while integrating a differentiable solver within the network loss

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

Σ Σ

4

8 1 + i
j

µj
j

function. This approach eliminates the need for direct training data for m, as the network is trained by

solving the inverse problem directly. The work is structured as follows: In Section 2, the methodology

and the design of the ML framework is described. Section 3 contains the application of the methodology

on different settings namely the Burgers equation, the Kovasznay flow and the lid driven cavity problem.

In section 4, the results are discussed, and an outlook on further developments of the methodology is

provided.

2. Methodology

2.1. Governing equations
To show the integration of neural networks with differentiable solvers, an inverse problem is formulated

to estimate diffusion parameters, specifically the viscosity ν, based on observable data. Two problem

settings are considered: the viscous Burgers equation

∂u ∂u 1 ∂2u

∂t
+ u

∂x
=

Re ∂x2
(4)

and the non-dimensional 2D incompressible Navier-Stokes equations:

∂u ∂u ∂u ∂p 1

∂2u ∂2u

∂t
+ u

∂x
+ v

∂v
= −

∂x
+

Re ∂x2
+

∂y2
,
 (5)

∂v ∂v ∂v ∂p 1

∂2v ∂2v

∂t
+ u

∂x
+ v

∂v
= −

∂y
+

Re ∂x2
+

∂y2
,

where the Reynolds number Re is defined as:

2.2. Viscosity model

Re =

UL
. (6)

ν

In order to demonstrate the ability of the method to learn material models, the well-known formulation

of Sutherland describing the temperature dependence of the dynamic viscosity µ is used as a reference

value. The formulation is given by

µ = µ0

T
 3/2

T0 + S

, (7)

T0 T + S

where µ0 is the dynamic viscosity at the reference temperature T0 and S is an effective temperature

known as the Sutherland constant. For the present study, a binary mixture of gases namely nitrogen (N2)

and oxygen (O2) in a ratio of 80/20 is used. The mixture dynamic viscosity µmix is calculated based on

the mixture rule of Wilke [14]:

and Φij is given by:

µmix

n

=
xiµi

i=1
ϕi

with ϕi

n

= xjΦij

j=1

(8)

1 +
q

µi

M
1 2

Mi

Φij = √ q
M

, (9)

where xi, Mi and µi are the model fraction, molar mass and dynamic viscosity of component i. To

calculate the kinematic viscosity ν required to determine Re and consequently to solve the considered

M

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

n

N
N

mix
RT

i i

i=1

PDE solver

Input

Layer

Hidden

Layers

Output

Layer

Differentiable Solution

Algorithm

Loss

Function

governing equations, the density of the mixture ρmix is calculated by the ideal gas law and the mixture

molar mass according to:

ρ =
pMmix

with M =
Σ

x M , (10)

where p is the system pressure specified with 1 bar and R is the universal gas constant. The data for the

application examples in the present study are generated using a temperature range from 300K to 500K.

2.3. Model setup

The objective is to train a neural network θ to approximate the material model for ν as a function of

input feature, in the present case the temperature T , expressed as ν = θ (T). In the considered problem

settings, the observable data consists of u for the Burgers equation and the velocity components [u, v] for

the Navier-Stokes equations. To train the neural network, an appropriate loss function must be defined.

This is achieved by solving the governing PDEs using standard numerical schemes, where the neural

network output serves as a parameter for computing the field values. The loss function is formulated

based on the mean absolute error (MAE) between the predicted and true values of u or [u, v], depending

on the application case. By ensuring that the numerical solver of the PDE is differentiable, the method

enables the backpropagation of optimization gradients through multiple solver steps and neural network

evaluations, facilitating efficient training of the network. This approach ensures that the learned param-

eter model is consistent with the underlying physics of the system. Fig. 1 shows a schematic illustration

of the ML framework. The entire machine learning framework, including the numerical solver, is imple-

Figure 1: Illustration of the ML framework.

mented using PyTorch, which facilitates the use of automatic differentiation (AD) for efficient gradient

computation. To reconstruct the viscosity model, a neural network with two hidden layers, each con-

taining 24 neurons, is employed. The hidden layers utilize the tanh activation function, while the output

layer applies the sigmoid activation function. The use of the sigmoid function in combination with an

a priori scaling ensures that the predicted viscosity values remain within a bounded range, preventing

the neural network from generating values unsuitable for the numerical solver used in the loss function

(e.g., predicting turbulent flow while using a solver designed for laminar flow). However, this approach

assumes prior knowledge of the expected viscosity range, requiring an appropriate scaling function for

accurate predictions. The data is split into train and test set using a ratio of 80/20 throughout all consid-

ered examples. A learning rate scheduler using a factor of 0.999 in each epoch is utilized. The training

process covers 300 epochs using the Adam optimizer. A more detailed description of the numerical

schemes used to solve the governing PDEs is provided for each application example in the following

section.

mix

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

+
Σ

An =
,2
∫ 1 exp

n
(2πν)−1 [cos (πx) − 1]

,
cos (nπx) dx n ̸= 0.

(11b)

0


 n=1

3. Applications
To demonstrate the performance of the methodology, three application examples are investigated namely

the Burgers equation, the Kovasznay flow and the lid driven cavity flow. Details about the numerical

schemes for designing the differentiable solver, the generation of the required data and the results ob-

tained are shown in the following.

3.1. Burgers equation
Data generation. The Burgers equation is considered with the initial conditions

u (x, 0) = sin (πx) , 0 < x < 1

and homogeneous boundary conditions

u (0, t) = u (1, t) , t > 1.

The required data set for training and testing is generated by the analytical solution using the Cole-Hopf

transformation [15, 16] given by
Σ∞

nAnsin (nπx) exp

−νn2π2t

u (x, t) = 2πν
A0

with the Fourier coefficients

∞
n=1 nAn cos (nπx) exp (−νn2π2t)

, (11a)

,∫ 1 exp
n

(2πν)−1 [cos (πx) − 1]
,

dx n = 0

0

To obtain values of Re to sustain stable results of the numerical solver, the characteristic velocity U in

Eq. 6 is set to 10−3 ms−1.

Numerical solver. The numerical solution of Eq. 4 follows standard discretization techniques commonly

used for this type of equation. The diffusion term is approximated using a central difference scheme,

while a first-order upwind scheme is employed for the convection term. For temporal discretization,

the Crank-Nicolson scheme is applied, providing a balance between accuracy and stability. The compu-

tational domain is discretized into 50 spatial cells and 200 time steps, ensuring adequate resolution to

capture the dynamics of the solution.

Results. To evaluate the accuracy of the differentiable numerical solver, the viscous Burgers’ equation

is solved for an arbitrary viscosity value, comparing the numerical solution with the analytical solution.

Figure 2 (a) illustrates this comparison, demonstrating a high level of agreement between both solutions.

The results confirm that the numerical solver accurately captures the underlying physics of the problem,

ensuring a reliable basis for training the ML model. In Figure 2 (b), the performance of the ML model

is assessed by comparing the true viscosity values with the predicted values obtained from the trained

network. The results show that the predicted values align closely with the true values, showing a slight

overprediction of the true values probably caused by deviations between the analytical and numerical

solution. Nevertheless, the results indicate that the ML model effectively learns the underlying mapping

between input features and viscosity, successfully solving the inverse problem.

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

Numerical

Analytical

L

L

2

0.040

0.9

0.8 0.035

0.7

0.6 0.030

0.5

0.4

0.025

0.3

0.2

0.020

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

x

(a)

0.015

0.015 0.020 0.025 0.030 0.035 0.040

true

(b)

Figure 2: Results of the Burgers equation application case: (a) comparison between numerical solver

and analytical solution for ν = 0.027 m2/s, (b) predicted vs. true ν in m2/s.

3.2. Kovasznay flow

Data generation. The Kovasznay flow is a well-known analytical solution of the 2D incompressible

Navier-Stokes equations for steady-state laminar flow behind a periodic array of vortices. It is particu-

larly useful as a benchmark for validating CFD solvers. Kovasznay found an analytical solution for the

velocity and pressure fields of this specific flow [17] given by

u (x, y) = 1 − exp (λx/L) cos

2πy

(12a)

λ

v (x, y) =
2π

exp (λx/L) sin

2πy

(12b)

1

where

p (x, y) = −
2

[1 − exp (2λx)] (12c)

λ =
1

Re −
√

Re2 + 16π2

(12d)

is a decay parameter dependent on Re. The setting of the original paper where the distance between the

vortices is used as the characteristic length L for non-dimensionalization. The characteristic velocity is

set to 10−3 ms−1 to ensure that the Reynolds number remains within the range where the flow is laminar

and the analytical solution is valid.

Numerical solver. The numerical solution of the Navier-Stokes equations is based on finite volume

discretization. A first-order scheme is employed for the convection term to ensure numerical stability,

while a second-order scheme is used for the diffusion term to improve accuracy. The pressure-velocity

coupling required for solving the incompressible Navier-Stokes equations is handled through an iterative

solver. The computational grid consists of 42 cells in both the x and y directions, providing a relatively

coarse resolution. However, this resolution is sufficient to accurately capture the vortex structures, en-

suring that the numerical solution remains consistent with the analytical Kovasznay flow solution, thus

enabling an effective loss formulation that integrates both numerical and analytical data.

train

test

u

p
re

d
ic

te
d

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

Results. Figure 3 (a) illustrates the velocity field computed by the numerical solver for an arbitrary vis-

cosity value, demonstrating the solver’s ability to accurately capture the flow characteristics. Comparing

the numerical results with the analytical values leads to a mean relative L2 error of 0.002 for u and 0.011

for v, respectively. The ML-predicted viscosity values are compared against the true values as shown

in Figure 3 (b). As the results indicate, a strong correlation between predicted and true viscosity values

is obtained proving that the proposed method is able to extract the required features from the analytical

solution although the numerical solver relies on a relativly rough computational resolution.

1.92

1.68

1.44

1.20

0.96

0.72

0.48

0.24

0.040

0.035

0.030

0.025

0.020

(a)

0.00

0.015

0.015 0.020 0.025 0.030 0.035 0.040

true

(b)

Figure 3: Results of the Kovasznay flow application case: (a) u field determined by the differentiable

numerical solver for ν = 0.025 m2/s, (b) predicted vs. true ν in m2/s.

3.3. Lid-driven cavity

Data generation. For the well-known lid-driven cavity example, unlike the previous cases, an analytical

solution is not available. Therefore, the dataset is generated using the same numerical solver that is

integrated into the ML framework. However, to better simulate real-world measurement conditions and

account for potential uncertainties, Gaussian noise is added to the generated data, introducing variability

that mimics experimental observations. Similar to the previous examples, Re is bounded by setting U to

5 · 10−3 ms−1

Numerical solver. The numerical solver as briefly described in the Kovasznay flow application is also

used for the lid-driven cavity case. To keep the computational time during training within reasonable

limits, the computational mesh has 51 cells in both the x and y directions. A validation of the numerical

results with the reference data of Ghia et al. [18] showed acceptable accordance.

Results. To demonstrate the ability of the differentiable fluid solver to accurately predict the flow, the

flow field of the lid-driven cavity of an arbitrary viscosity values is shown in Figure 4 (a). Since no

analytical solution exists for this case, the dataset used to train the ML model was generated using the

same numerical solver adding 5% Gaussian noise to simulate real-world measurement uncertainties.

Figure 4 (b), the ML-predicted viscosity values are compared against the true values. The results form

an almost perfect diagonal line, indicating that the model accurately reconstructs viscosity from the noisy

input data. This strong correlation suggests that the ML model effectively learns the underlying viscosity

distribution, even in the presence of noise, demonstrating its robustness and reliability.

train

test

u

p
re

d
ic

te
d

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

0.035

0.030

0.025

0.020

(a)

0.015

0.015 0.020 0.025 0.030 0.035 0.040

true

(b)

Figure 4: Results of the lid-driven cavity application case: (a) u field determined by the differentiable

numerical solver for ν = 0.01 m2/s, (b) predicted vs. true ν in m2/s.

4. Discussion and conclusion
This study demonstrates the effectiveness of integrating differentiable solvers into ML frameworks for

solving inverse problems governed by PDEs. By using automatic differentiation, the proposed approach

enables direct optimization of neural network parameters through gradient-based methods, allowing for

robust parameter estimation without requiring direct observational data of the target parameters. The

method was applied to three different flow scenarios: the viscous Burgers’ equation, the Kovasznay flow,

and the lid-driven cavity problem. In each case, the neural network successfully learned the underly-

ing viscosity model based on observable velocity fields. The results for the Burgers’ equation showed

a high degree of agreement between the numerical and analytical solutions, confirming the accuracy of

the numerical solver. The Kovasznay flow results exhibited a nearly perfect correlation between the true

and predicted viscosity values, although the numerical solver relies on a relatively rough computational

resolution. Similarly, in the lid-driven cavity problem, the ML model demonstrated excellent predictive

performance, accurately reconstructing viscosity despite the introduction of Gaussian noise to simulate

measurement uncertainties. These findings highlight the potential of the proposed differentiable solver-

based learning framework for solving inverse problems in fluid dynamics and other PDE-driven systems.

Unlike purely data-driven models, this approach ensures that the learned parameters remain consistent

with underlying physical principles, improving generalizability and robustness. However, since the cur-

rent study focuses on the principle functionality of the approach, no measures concerning computational

speed have been taken. Although the differentiable solver is able to be executed on graphics processing

unit (GPU) along with the neural network training, the backpropagation through the solver by AD is still

time consuming. Thus, future work will focus on the use of adjoint methods to compute the gradients ef-

fectively. Furthermore, the application of the approach to real-world examples will be explored, focusing

on potential use cases such as learning material laws or virtual sensing. Overall, this study confirms that

integrating machine learning with differentiable solvers is a powerful and scalable approach for solving

inverse problems in computational physics.

Acknowledgments
Stefan Posch would like to acknowledge the financial support of the “COMET Module LEC FFF” within

the “COMET - Competence Centers for Excellent Technologies” Programme of the Austrian Federal

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

train

test

u

p
re

d
ic

te
d

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the

Austrian Federal Ministry of Labour and Economy (BMAW) and the Provinces of Styria and Tyrol. The

COMET Programme is managed by the Austrian Research Promotion Agency (FFG). Marian Staggl and

Wolfgang Sanz would like to acknowledge the financial support of the ”ARIADNE” by the ”Take Off”

Program, a Research, Technology, and Innovation Funding Program of the Republic of Austria’s Ministry

of Climate Action. The ”ARIADNE” Programme is managed by the Austrian Research Promotion

Agency (FFG).

References

[1] S. Arridge, P. Maass, O. Ö ktem, and C.-B. Schönlieb, “Solving inverse problems using data-driven

models,” Acta Numerica, vol. 28, pp. 1–174, 2019.

[2] Q. Lin, N. Allanic, R. Deterre, P. Mousseau, and M. Girault, “In-line viscosity identification via

thermal-rheological measurements in an annular duct for polymer processing,” International Jour-

nal of Heat and Mass Transfer, vol. 182, p. 121988, 2022.

[3] H. Ouaissa, A. Chakib, A. Nachaoui, and M. Nachaoui, “On numerical approaches for solving an

inverse cauchy stokes problem,” Applied Mathematics & Optimization, vol. 85, no. 1, p. 3, 2022.

[4] A. Kontogiannis, S. V. Elgersma, A. J. Sederman, and M. P. Juniper, “Joint reconstruction and

segmentation of noisy velocity images as an inverse navier–stokes problem,” Journal of Fluid Me-

chanics, vol. 944, p. A40, 2022.

[5] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learn-

ing framework for solving forward and inverse problems involving nonlinear partial differential

equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[6] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: Learning velocity and

pressure fields from flow visualizations,” Science, vol. 367, no. 6481, pp. 1026–1030, 2020.

[7] A. D. Jagtap, Z. Mao, N. Adams, and G. E. Karniadakis, “Physics-informed neural networks for

inverse problems in supersonic flows,” Journal of Computational Physics, vol. 466, p. 111402,

2022.

[8] Y. Bai, X. Chen, C. Gong, and J. Liu, “Impinn: Improved physics-informed neural networks for

solving inverse problems,” in 2024 International Conference on Cyber-Enabled Distributed Com-

puting and Knowledge Discovery (CyberC), pp. 189–198, IEEE, 2024.

[9] P. Karnakov, S. Litvinov, and P. Koumoutsakos, “Solving inverse problems in physics by opti-

mizing a discrete loss: Fast and accurate learning without neural networks,” PNAS Nexus, vol. 3,

p. pgae005, 01 2024.

[10] B. List, L.-W. Chen, and N. Thuerey, “Learned turbulence modelling with differentiable fluid

solvers: physics-based loss functions and optimisation horizons,” Journal of Fluid Mechanics,

vol. 949, p. A25, 2022.

[11] S. Brahmachary and N. Thuerey, “Unsteady cylinder wakes from arbitrary bodies with differen-

tiable physics-assisted neural network,” Physical Review E, vol. 109, no. 5, p. 055304, 2024.

[12] E. Franz and N. Thuerey, “Pict: Adaptive gpu accelerated differentiable fluid simulation for ma-

chine learning,” in ICML 2024 Workshop on Differentiable Almost Everything: Differentiable Re-

laxations, Algorithms, Operators, and Simulators, 2024.

Proceedings of the 1st International Symposium on AI and Fluid Mechanics

Paper No S2 P6

[13] P. Holl and N. Thuerey, “ϕF low: Differentiable simulations for machine learning,” in ICML 2024

Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators,

and Simulators, 2024.

[14] C. R. Wilke, “A viscosity equation for gas mixtures,” The journal of chemical physics, vol. 18,

no. 4, pp. 517–519, 1950.

[15] J. D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics,” Quarterly of applied

mathematics, vol. 9, no. 3, pp. 225–236, 1951.

[16] E. Hopf, “The partial differential equation ut + uux = µuxx,” Communications on Pure and

Applied mathematics, vol. 3, no. 3, pp. 201–230, 1950.

[17] L. I. G. Kovasznay, “Laminar flow behind a two-dimensional grid,” in Mathematical Proceedings

of the Cambridge Philosophical Society, vol. 44, pp. 58–62, Cambridge University Press, 1948.

[18] U. Ghia, K. N. Ghia, and C. Shin, “High-re solutions for incompressible flow using the navier-

stokes equations and a multigrid method,” Journal of computational physics, vol. 48, no. 3, pp. 387–

411, 1982.

