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Abstract. Inverse problems aim to estimate hidden parameters of a mathematical model using observed 

data. Deep learning models, particularly physics-informed neural networks (PINNs), have shown great 

potential for solving such problems. PINNs integrate physical laws into the loss function, ensuring 

solutions match observed data while adhering to governing physical principles, enhancing accuracy and 

reliability. Typically, PINNs predict unavailable variables through physics-informed loss functions. This 

work explores a different scenario: approximating the function m = g(k), where k are characteristic 

parameters to describe m. However, m is not explicitly represented in the available data. Instead, a 

known physical relation u = f (x, t, m), expressed by a partial differential equation (PDE), and data 

for u are available. To train the network, a custom loss function incorporates the PDE solution via a 

differentiable numerical solver, enabling gradient computation throughout the PDE solution process for 

effective training. This method has been applied to three flow problems, namely the Burgers equation, 

the Kovasznay flow and the lid-driven cavity flow, demonstrating accurate parameter identification and 

robustness. Potential applications include learning material laws and virtual sensing, where indirect 

measurements infer critical system parameters. 

 

1. Introduction 
In several areas of science and engineering such as fluid mechanics, the accurate recovery of hidden 

multi-dimensional model parameters from indirect observations are a common issue [1]. These so-called 

inverse problems can be formalized as solving an equation in the form 

 
u = f (m), (1) 

where u  Y are the observed data and m  X are the model parameters to determine. The mapping 

f : X  Y is the forward operator [1]. To solve this inverse problem, several strategies can be em- 

ployed. Traditional techniques such as regularization methods solve the forward problem multiple times 

in order to get the required information for the inverse problem. Lin et al. [2] estimated the viscosity 

of a power-law fluid combining temperature and pressure measurements, and a numerical model of the 

investigated system. The numerical model describes the viscous heating and heat convection used for the 

inverse analysis of the viscosity. A further regularization-based application for solving an inverse fluid 

flow problem was shown by Ouaissa et al. [3]. The authors presented a formulation for determining the 

fluid velocity and the flux over a part of the boundary by introducing given measurements on the remain- 

ing part of the inverse Cauchy problem governed by Stokes equation. Using the adjoint gradient method 

to solve the derived regularized solution, the proposed method is highly efficient. Kontogiannis et al. [4] 

solved the inverse Navier–Stokes problem for the joint velocity field reconstruction and boundary seg- 

mentation of noisy flow velocity images. In their work, the authors used a Bayesian framework with 

Gaussian random fields to regularize the problem and to estimate the uncertainties of the unknowns by a 
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quasi-Newton method. Their outcomes indicate that the method successfully reconstructs and segments 

noisy images highly efficient. 

Recent works have underlined the potential of using physics-informed neural networks (PINNs)[5] 

for inverse problems. Raissi et al. [5] already showed the use of PINNs for inverse problems in their ini- 

tial work by approximating unknown parameters of the Navier-Stokes equations using noisy data. In one 

of their followed works, Raissi et al. [6] not only showed to estimate system parameters but also the pos- 

sibility to predict the velocity and pressure field based on a given passive scalar. Jagtap et al. [7] applied 

the PINN framework for inverse problems in supersonic flows. In addition to the compressible Euler 

equations, the authors enforced the entropy conditions to obtain viscosity solutions. Furthermore, the 

authors reported that domain decomposition allows to use neural networks in each subdomain yielding 

convergence enhancement in case of high-gradient solutions as for shock problems. Bai et al. [8] gave 

an overview on strategies to improve the performance of PINNs for inverse problems. They combined 

adaptive activation function, loss function and sampling strategies. Tests on parameter identification 

in different partial differential equations (PDEs) such as Burgers equation and Navier-Stokes equation 

showed that their proposed strategy is able to reduce the relative error of the unknown parameters by up 

to two orders of magnitude compared to vanilla PINNs. Karnakov et al. [9] pointed out several draw- 

backs of using PINNs, in particular for inverse problems motivating for the development of a method 

based on optimizing a discrete loss (ODIL). The authors pointed out that PINNs often cannot match con- 

ventional numerical methods for well-posed forward PDE problems due to their high computational cost, 

which stems from evaluating a dense network at every collocation point and lacking the sparse structures 

typical of grid-based methods. They also do not incorporate physically motivated numerical techniques 

(e.g., upwind schemes) that can expedite convergence and ensure stability. Moreover, higher-order PDEs 

pose additional challenges because nested automatic differentiation grows exponentially with the order 

of derivatives, and many proposed architectural improvements do not guarantee a universal improvement 

in accuracy or training speed. ODIL minimizes a cost function for the discrete forms of PDEs using 

gradient-based and Newton’s methods. The results of Karnakov et al. [9] showed that ODIL outperforms 

PINNs in terms of computational efficiency and accuracy on several inverse and ill-posed problems. 

The present work addresses not only the estimation of model parameters, denoted as m, from ob- 

served data but also the simultaneous learning of an operator function g that maps a given input parameter 

set k to m in a single step. The operator function g is modeled using a neural network, represented as 

m = gθ(k), (2) 

where gθ denotes the operator function depending on the neural network weights θ. The inverse problem 

is given by 

u = f (x, t, m), (3) 

where u is the observed data and f describes the underling physical system in form of a PDE. To en- 

able the neural network training, the forward solution of f is integrated into the loss function using 

standard numerical schemes. Crucially, this approach requires the forward solver to be differentiable. 

Differentiable solvers facilitate the computation of gradients of the solution with respect to the problem 

parameters, enabling the use of common gradient-based optimization methods widely adopted in ma- 

chine learning. For instance, List et al. [10] demonstrated the utility of differentiable fluid solvers in 

learning turbulence models from direct numerical simulation (DNS) data. In their approach, a convolu- 

tional neural network (CNN) predicts a corrective forcing term, and the integration with a differentiable 

solver allows the model to achieve excellent agreement with a posteriori DNS data validation. Further 

applications of differentiable flow solvers have been explored in [11, 12, 13]. 

The present study builds on this concept by combining a neural network to predict an unknown 

parameter m based on input features, while integrating a differentiable solver within the network loss 
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function. This approach eliminates the need for direct training data for m, as the network is trained by 

solving the inverse problem directly. The work is structured as follows: In Section 2, the methodology 

and the design of the ML framework is described. Section 3 contains the application of the methodology 

on different settings namely the Burgers equation, the Kovasznay flow and the lid driven cavity problem. 

In section 4, the results are discussed, and an outlook on further developments of the methodology is 

provided. 

 

2. Methodology 

2.1. Governing equations 
To show the integration of neural networks with differentiable solvers, an inverse problem is formulated 

to estimate diffusion parameters, specifically the viscosity ν, based on observable data. Two problem 

settings are considered: the viscous Burgers equation 

∂u ∂u 1 ∂2u 

∂t 
+ u

∂x 
= 

Re ∂x2 
(4)

 

and the non-dimensional 2D incompressible Navier-Stokes equations: 

∂u ∂u ∂u ∂p  1 
  

∂2u ∂2u
 
 

∂t 
+ u

∂x 
+ v 

∂v 
= − 

∂x 
+ 

Re ∂x2 
+ 

∂y2 
,
  (5) 

∂v ∂v ∂v ∂p  1 
  

∂2v ∂2v
 
 

∂t 
+ u

∂x 
+ v

∂v 
= − 

∂y 
+ 

Re ∂x2 
+ 

∂y2 
,
 

where the Reynolds number Re is defined as: 

 

 
 

2.2. Viscosity model 

 
Re = 

UL
. (6) 

ν 

In order to demonstrate the ability of the method to learn material models, the well-known formulation 

of Sutherland describing the temperature dependence of the dynamic viscosity µ is used as a reference 

value. The formulation is given by 

 
µ = µ0 

  
T
  3/2 

T0 + S 
 
, (7) 

T0 T + S 

where µ0 is the dynamic viscosity at the reference temperature T0 and S is an effective temperature 

known as the Sutherland constant. For the present study, a binary mixture of gases namely nitrogen (N2) 

and oxygen (O2) in a ratio of 80/20 is used. The mixture dynamic viscosity µmix is calculated based on 

the mixture rule of Wilke [14]: 

 

 

 
and Φij is given by: 

 
µmix 

n 

= 
xiµi 

i=1  
ϕi

 

 
with ϕi 

n 

= xjΦij 

j=1 

 
(8) 

1 + 
q 

µi
 

M 
1  2 

Mi 

Φij = √ q 
M 

, (9) 

 

where xi, Mi and µi are the model fraction, molar mass and dynamic viscosity of component i. To 

calculate the kinematic viscosity ν required to determine Re and consequently to solve the considered 

M 
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governing equations, the density of the mixture ρmix is calculated by the ideal gas law and the mixture 

molar mass according to: 
 

ρ = 
pMmix 

 

with M = 
Σ 

x M , (10) 
 

where p is the system pressure specified with 1 bar and R is the universal gas constant. The data for the 

application examples in the present study are generated using a temperature range from 300K to 500K. 

 

2.3. Model setup 

The objective is to train a neural network θ to approximate the material model for ν as a function of 

input feature, in the present case the temperature T , expressed as ν =  θ (T ). In the considered problem 

settings, the observable data consists of u for the Burgers equation and the velocity components [u, v] for 

the Navier-Stokes equations. To train the neural network, an appropriate loss function must be defined. 

This is achieved by solving the governing PDEs using standard numerical schemes, where the neural 

network output serves as a parameter for computing the field values. The loss function is formulated 

based on the mean absolute error (MAE) between the predicted and true values of u or [u, v], depending 

on the application case. By ensuring that the numerical solver of the PDE is differentiable, the method 

enables the backpropagation of optimization gradients through multiple solver steps and neural network 

evaluations, facilitating efficient training of the network. This approach ensures that the learned param- 

eter model is consistent with the underlying physics of the system. Fig. 1 shows a schematic illustration 

of the ML framework. The entire machine learning framework, including the numerical solver, is imple- 
 

 

Figure 1: Illustration of the ML framework. 

 
mented using PyTorch, which facilitates the use of automatic differentiation (AD) for efficient gradient 

computation. To reconstruct the viscosity model, a neural network with two hidden layers, each con- 

taining 24 neurons, is employed. The hidden layers utilize the tanh activation function, while the output 

layer applies the sigmoid activation function. The use of the sigmoid function in combination with an 

a priori scaling ensures that the predicted viscosity values remain within a bounded range, preventing 

the neural network from generating values unsuitable for the numerical solver used in the loss function 

(e.g., predicting turbulent flow while using a solver designed for laminar flow). However, this approach 

assumes prior knowledge of the expected viscosity range, requiring an appropriate scaling function for 

accurate predictions. The data is split into train and test set using a ratio of 80/20 throughout all consid- 

ered examples. A learning rate scheduler using a factor of 0.999 in each epoch is utilized. The training 

process covers 300 epochs using the Adam optimizer. A more detailed description of the numerical 

schemes used to solve the governing PDEs is provided for each application example in the following 

section. 

mix 
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3. Applications 
To demonstrate the performance of the methodology, three application examples are investigated namely 

the Burgers equation, the Kovasznay flow and the lid driven cavity flow. Details about the numerical 

schemes for designing the differentiable solver, the generation of the required data and the results ob- 

tained are shown in the following. 

 

3.1. Burgers equation 
Data generation. The Burgers equation is considered with the initial conditions 

u (x, 0) = sin (πx) , 0 < x < 1 
 

and homogeneous boundary conditions 

u (0, t) = u (1, t) , t > 1. 
 

The required data set for training and testing is generated by the analytical solution using the Cole-Hopf 

transformation [15, 16] given by 
Σ∞  

nAnsin (nπx) exp
 
−νn2π2t

 
 

u (x, t) = 2πν 
A0 

with the Fourier coefficients 

∞ 
n=1 nAn cos (nπx) exp (−νn2π2t) 

, (11a)
 

,∫ 1 exp 
n

(2πν)−1 [cos (πx) − 1]
, 

dx n = 0 

0 
 

To obtain values of Re to sustain stable results of the numerical solver, the characteristic velocity U in 

Eq. 6 is set to 10−3 ms−1. 

 
Numerical solver. The numerical solution of Eq. 4 follows standard discretization techniques commonly 

used for this type of equation. The diffusion term is approximated using a central difference scheme, 

while a first-order upwind scheme is employed for the convection term. For temporal discretization, 

the Crank-Nicolson scheme is applied, providing a balance between accuracy and stability. The compu- 

tational domain is discretized into 50 spatial cells and 200 time steps, ensuring adequate resolution to 

capture the dynamics of the solution. 

 
Results. To evaluate the accuracy of the differentiable numerical solver, the viscous Burgers’ equation 

is solved for an arbitrary viscosity value, comparing the numerical solution with the analytical solution. 

Figure 2 (a) illustrates this comparison, demonstrating a high level of agreement between both solutions. 

The results confirm that the numerical solver accurately captures the underlying physics of the problem, 

ensuring a reliable basis for training the ML model. In Figure 2 (b), the performance of the ML model 

is assessed by comparing the true viscosity values with the predicted values obtained from the trained 

network. The results show that the predicted values align closely with the true values, showing a slight 

overprediction of the true values probably caused by deviations between the analytical and numerical 

solution. Nevertheless, the results indicate that the ML model effectively learns the underlying mapping 

between input features and viscosity, successfully solving the inverse problem. 
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Figure 2: Results of the Burgers equation application case: (a) comparison between numerical solver 

and analytical solution for ν = 0.027 m2/s, (b) predicted vs. true ν in m2/s. 

 
3.2. Kovasznay flow 

Data generation. The Kovasznay flow is a well-known analytical solution of the 2D incompressible 

Navier-Stokes equations for steady-state laminar flow behind a periodic array of vortices. It is particu- 

larly useful as a benchmark for validating CFD solvers. Kovasznay found an analytical solution for the 

velocity and pressure fields of this specific flow [17] given by 

u (x, y) = 1 − exp (λx/L) cos

  
2πy

 

(12a) 

 
λ 

v (x, y) = 
2π 

exp (λx/L) sin

  
2πy

 

(12b) 

1 

 
where 

p (x, y) = − 
2 

[1 − exp (2λx)] (12c) 

λ = 
1  

Re − 
√

Re2 + 16π2
 

(12d) 

is a decay parameter dependent on Re. The setting of the original paper where the distance between the 

vortices is used as the characteristic length L for non-dimensionalization. The characteristic velocity is 

set to 10−3 ms−1 to ensure that the Reynolds number remains within the range where the flow is laminar 

and the analytical solution is valid. 

 
Numerical solver. The numerical solution of the Navier-Stokes equations is based on finite volume 

discretization. A first-order scheme is employed for the convection term to ensure numerical stability, 

while a second-order scheme is used for the diffusion term to improve accuracy. The pressure-velocity 

coupling required for solving the incompressible Navier-Stokes equations is handled through an iterative 

solver. The computational grid consists of 42 cells in both the x and y directions, providing a relatively 

coarse resolution. However, this resolution is sufficient to accurately capture the vortex structures, en- 

suring that the numerical solution remains consistent with the analytical Kovasznay flow solution, thus 

enabling an effective loss formulation that integrates both numerical and analytical data. 
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Results. Figure 3 (a) illustrates the velocity field computed by the numerical solver for an arbitrary vis- 

cosity value, demonstrating the solver’s ability to accurately capture the flow characteristics. Comparing 

the numerical results with the analytical values leads to a mean relative L2 error of 0.002 for u and 0.011 

for v, respectively. The ML-predicted viscosity values are compared against the true values as shown 

in Figure 3 (b). As the results indicate, a strong correlation between predicted and true viscosity values 

is obtained proving that the proposed method is able to extract the required features from the analytical 

solution although the numerical solver relies on a relativly rough computational resolution. 
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Figure 3: Results of the Kovasznay flow application case: (a) u field determined by the differentiable 

numerical solver for ν = 0.025 m2/s, (b) predicted vs. true ν in m2/s. 

 

3.3. Lid-driven cavity 

Data generation. For the well-known lid-driven cavity example, unlike the previous cases, an analytical 

solution is not available. Therefore, the dataset is generated using the same numerical solver that is 

integrated into the ML framework. However, to better simulate real-world measurement conditions and 

account for potential uncertainties, Gaussian noise is added to the generated data, introducing variability 

that mimics experimental observations. Similar to the previous examples, Re is bounded by setting U to 

5 · 10−3 ms−1 

Numerical solver. The numerical solver as briefly described in the Kovasznay flow application is also 

used for the lid-driven cavity case. To keep the computational time during training within reasonable 

limits, the computational mesh has 51 cells in both the x and y directions. A validation of the numerical 

results with the reference data of Ghia et al. [18] showed acceptable accordance. 

 
Results. To demonstrate the ability of the differentiable fluid solver to accurately predict the flow, the 

flow field of the lid-driven cavity of an arbitrary viscosity values is shown in Figure 4 (a). Since no 

analytical solution exists for this case, the dataset used to train the ML model was generated using the 

same numerical solver adding 5% Gaussian noise to simulate real-world measurement uncertainties. 

Figure 4 (b), the ML-predicted viscosity values are compared against the true values. The results form 

an almost perfect diagonal line, indicating that the model accurately reconstructs viscosity from the noisy 

input data. This strong correlation suggests that the ML model effectively learns the underlying viscosity 

distribution, even in the presence of noise, demonstrating its robustness and reliability. 
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Figure 4: Results of the lid-driven cavity application case: (a) u field determined by the differentiable 

numerical solver for ν = 0.01 m2/s, (b) predicted vs. true ν in m2/s. 

 
4. Discussion and conclusion 
This study demonstrates the effectiveness of integrating differentiable solvers into ML frameworks for 

solving inverse problems governed by PDEs. By using automatic differentiation, the proposed approach 

enables direct optimization of neural network parameters through gradient-based methods, allowing for 

robust parameter estimation without requiring direct observational data of the target parameters. The 

method was applied to three different flow scenarios: the viscous Burgers’ equation, the Kovasznay flow, 

and the lid-driven cavity problem. In each case, the neural network successfully learned the underly- 

ing viscosity model based on observable velocity fields. The results for the Burgers’ equation showed 

a high degree of agreement between the numerical and analytical solutions, confirming the accuracy of 

the numerical solver. The Kovasznay flow results exhibited a nearly perfect correlation between the true 

and predicted viscosity values, although the numerical solver relies on a relatively rough computational 

resolution. Similarly, in the lid-driven cavity problem, the ML model demonstrated excellent predictive 

performance, accurately reconstructing viscosity despite the introduction of Gaussian noise to simulate 

measurement uncertainties. These findings highlight the potential of the proposed differentiable solver- 

based learning framework for solving inverse problems in fluid dynamics and other PDE-driven systems. 

Unlike purely data-driven models, this approach ensures that the learned parameters remain consistent 

with underlying physical principles, improving generalizability and robustness. However, since the cur- 

rent study focuses on the principle functionality of the approach, no measures concerning computational 

speed have been taken. Although the differentiable solver is able to be executed on graphics processing 

unit (GPU) along with the neural network training, the backpropagation through the solver by AD is still 

time consuming. Thus, future work will focus on the use of adjoint methods to compute the gradients ef- 

fectively. Furthermore, the application of the approach to real-world examples will be explored, focusing 

on potential use cases such as learning material laws or virtual sensing. Overall, this study confirms that 

integrating machine learning with differentiable solvers is a powerful and scalable approach for solving 

inverse problems in computational physics. 
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