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Abstract 

High-fidelity flow field reconstruction has been a focal point for many research studies, as the measured 

sensor data are often sparse and incomplete in both time and space. Physics-informed neural networks 

(PINNs) have been proposed to reconstruct fields using imperfect data, as they incorporate physical 

principles and thereby reducing reliance on the known sensor data. However, the placement of sensors 

remains crucial for optimizing PINNs, and existing studies have not sufficiently considered this aspect. 

Therefore, developing algorithms that intelligently improve sensor placement is of significant importance. 

In this study, we introduce a general approach that employs differentiable programming with attention 

modules to optimize sensor placement within the training of a PINNs model in order to improve flow field 

reconstruction. We evaluate our method using the lid-driven cavity flow problem. The result indicates that 

our method improves test scores and effectively learns the optimal layout of sensors. This research advances 

our understanding of the relationship between sensor placement and predictive precision using PINNs, 

which will contribute to the development of fields such as health monitoring, data assimilation, and super- 

resolution reconstruction. 

 

1. Introduction 

Spatial fluid field reconstruction from limited local sensor information is a common problem in high- 

dimensional complex physical systems, some examples include cardiac blood flow modeling [1,2], ship 

wake identification [3], and climate science[4]. Traditional linear theory-based tools, including Galerkin 

transformations[5], Gappy proper orthogonal decomposition[6], and linear stochastic estimation methods 

such as Kalman filter (KF)[7], face challenges in reconstructing global fields from a limited number of 

sensors under those systems with complex physics. Moreover, with the widespread attention received by 

machine learning (ML), deep neural networks (DNN) have been regarded as promising nonlinear 

alternatives for reconstructing chaotic data from sparse measurements [8].Most of the existing methods for 

recovering high-resolution field from low-resolution data using deep learning methods come from Super- 

resolution (SR) [9], in which convolutional neural networks (CNN) are most used [10]. However, almost 

all practical experimental measurements and numerical simulations rely on unstructured grids or random 
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sensor placements. These grids are incompatible with CNN methods, which require the training data to be 

structured and uniformly arranged [11,12]. 

Physics-informed neural networks (PINNs), proposed earlier by Raissi et al. [13], have obtained popularity 

in the physical field prediction for outperformed capability and available physical interpretability, including 

forward [14,15,16] and inverse [17,18,19] problems. PINNs are usually regarded as simulation methods 

based on neural networks. JIN et al. [14] developed the Navier-Stokes flow nets (NSFnets) to solve the 

incompressible flow by considering two different mathematical formulations of the Navier-Stokes 

equations: the velocity-pressure (VP) formulation and the vorticity-velocity (VV) formulation. Cai et al. 

[20] indirectly calculated the velocity and pressure field by measuring the temperature field with to ographic 

background oriented schlieren. Further, Sun et al. [21] used PINNs to accurately calculate the ideal vascular 

flow without any simulation data, proving that PINN is a promising complement to traditional 

computational fluid dynamics (CFD) methods. However, the current PINN method performs poorly in 

solving highly nonlinear systems such as turbulent fields or three-dimensional scenes, so PINN at this stage 

should not only be treated it as a CFD method, but also paid more attention to its advantages in processing 

sparse data. Xu et al. [22] investigated the influence of different sparsity and different missing regions to 

field reconstruction with PINN and revealed that the proposed approach not only can reconstruct the true 

velocity field with high accuracy, but also can predict the pressure field precisely, even when the data 

sparsity reaches 1% or the core flow area data are truncated away. This study provides encouraging insights 

that the PINN can serve as a promising data assimilation method. 

It is worth noting that no matter the linear theory-based tools, SR methods or PINNs, the location of the 

sparse points/sensor placement is crucial to the fidelity and efficiency of the field reconstruction. Various 

strategies have been proposed to optimize the location of sensors, i.e., optimal sensor placement (OSP) 

methods. Deng et al. [23] focused on the OSP strategy based on a DNN for turbulent flow recovery within 

the data assimilation framework of the ensemble Kalman filter (EnKF). Cai et al. [24] proposed an OSP 

method based on the PINN framework that selects sensor locations by evaluating residuals of governing 

equations. Sharma et al. [25] systematically generated 80 distinct sensor configurations for a 2-dimensional 

stenosis hemodynamics problem and demonstrated that the accuracy of flow-field predictions is notably 

more sensitive to sensors located close to the stenosis and inlet. We can see that the existing OSP methods 

are generally decoupled from the field reconstruction algorithm, so the optimization of sensor placements 

does not adaptively match the updates of the reconstruction model. In particular, the OSP algorithm 

combined with the PINN method is basically empirical. 

In response to the aforementioned challenges, we propose a model that incorporates sparse sensor 

placement method into a PINN, called OSPPINN. OSPPINN enables to reconstruct a field by optimizing 

the sensors positions via backpropagation, thereby facilitating the model’s exploration of the spatial domain 

and enhancing sensor positioning effectively. OSPPINN consists of three modules: Interpolator, Encoder, 

and Decoder, which are responsible for real-time acquisition of sensor values, sparse information attention 

feature extraction, and PDE solution respectively. The remainder of the paper is organized as follows: The 

OSPPINN method is introduced in Section 2. The proposed method is applied to the lid-driven cavity flow 

problem in comparison to the vanilla PINN and uniform sensor placement method in Section 3. The 

conclusions are provided in Section 4. 

 

2. Numerical Method 

 

2.1 Pinn-driven optimal sensor placement model (OSPPINN) 
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As shown in Figure 1 (a), the OSPPINN framework consists of three main components of its architecture: 

a sensor value Interpolator, a sensor data Encoder, and a PDE solver Decoder. The sensor value Interpolator 

is to get the property values for the variable sensor locations and maps spatial coordinates to encoding 

vectors. The sensor data attention-driven Encoder maps the sensor data, obtained by concatenating spatial 

encodings and property values, to a compressed latent matrix. The PDE solver Decoder is a physics- 

informed neural network that predicts the field value at any given residual position. In addition to the neural 

network's weights, the sensor positions are treated as trainable parameters within the model, which we aim 

to optimize for improved performance in subsequent Decoder solving. 

Sensor value Interpolator. Following each optimization iteration, the sensor positions undergo dynamic 

adjustments, necessitating the recalibration of corresponding physical property values at updated 

coordinates. This recalculation process is seamlessly integrated into the overall network optimization 

workflow and must therefore be executed in a differentiable manner. To achieve this, we utilize a 

differentiable interpolation method to determine sensor values at arbitrary positions. Specifically, for the 

updated sensor locations at each step, we employ either bilinear or trilinear interpolation based on 

neighboring information to compute the property values. These interpolated sensor measurements, along 

with their positional coordinates, constitute the input tensor for the subsequent Encoder network. To ensure 

numerical stability during position updates, a boundary proximity constraint is enforced: sensors 

approaching computational domain boundaries trigger gradient sign inversion in their update direction 

vectors. This mechanism effectively repels sensors from boundary regions while maintaining 

differentiability throughout the optimization trajectory. 
 

Figure 1 Details of the OSPPINN model, which includes Interpolator, Encoder and Decoder modules. 
 

Sensor data Encoder. The Encoder module takes the locations and values of the sensors as inputs, which 

are processed through a fully connected linear layer to match the input dimensions required by the 

subsequent attention block. Each module contains a multi-head self-attention layer and a feedforward layer. 

The self-attention layer maintains the output dimensions consistent with the input, and we incorporate a 

residual connection around it to ensure that sensor information is fully preserved. The training of the 
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attention module is critical, as it determines the quality of the compressed representation, which in turn 

influences the optimization of the subsequent PDE solver Decoder. 

PDE solver Decoder. In the Decoder block, the multi-head cross-attention allows residual points to be 

solved selectively focusing on specific dependencies within the input sensor compact representation during 

the decoding process, enabling it to capture more relevant useful information than conventional PINNs. 

The keys and values for this cross-attention are provided by the Encoder output, while the spatial vector, 

post-residual point position encoding, serves as the query array. Similar to the Encoder, we employ residual 

connections around the cross-attention layer. This is followed by three feed forward layers, which are 

similar to vanilla DNN PINNs used to learn the PDE solution of the residual point. The purpose of the 

Decoder module is to select appropriate sensor data for the specific residual point, facilitating its PINN 

solving process. 

Sensor locations 𝑺 along with OSPPINN’s weights 𝑾 and biases 𝒃 need to be learned by solving an 

optimizing problem, defined as in equation (1). 

𝑾, 𝒃, 𝑺 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑜𝑠𝑠 (1) 
𝑾,𝒃,𝑺 

 

where 𝐿𝑜𝑠𝑠 is the objective function, which consists of the following three components 

𝐿𝑜𝑠𝑠 = 𝜆𝑠𝑒𝑛𝑠𝑜𝑟𝐿𝑜𝑠𝑠𝑠𝑒𝑛𝑠𝑜𝑟 + 𝜆𝑝𝑑𝑒𝐿𝑜𝑠𝑠𝑝𝑑𝑒 + 𝜆𝑏𝑐/𝑖𝑐𝐿𝑜𝑠𝑠𝑏𝑐/𝑖𝑐 (2) 

where 𝐿𝑜𝑠𝑠𝑠𝑒𝑛𝑠𝑜𝑟 , 𝐿𝑜𝑠𝑠𝑝𝑑𝑒 and 𝐿𝑜𝑠𝑠𝑏𝑐/𝑖𝑐 represent the sensor data driven component, the physics- 

informed components in the interior domain and the initial/boundary conditions, respectively. 𝜆𝑠𝑒𝑛𝑠𝑜𝑟, 𝜆𝑝𝑑𝑒 

and 𝜆𝑏𝑐/𝑖𝑐 are the corresponding weights for each component, set to 2, 0.2, and 2 in this work. The physics 

are encoded into the OPSPINN by penalizing the residuals of the PDEs over a set of collocation points in 

the interior and associated BC/ICs of a set of collocation points on the boundary. In this study, we use a 

fixed learning rate of 0.001 combined with the Adam method for training. 

 

3. Results 

 

3.1 The lid-driven cavity flow problem 

In this case, we employ a canonical benchmark problem which is a well-established benchmark in PINN 

prediction, the steady-state flow in a two-dimensional lid-driven cavity, to analyse the performance of the 

OSPPINN. By comparing with the vanilla PINN and OSPPINN with fixed sensor locations, we demonstrate 

the effectiveness of sensor optimization and sensor data encoder. The performance of the trained models is 

assessed using the L2 norm errors 
‖𝑦−𝑦 ‖2 

. The flow system is governed by the steady incompressible 
‖𝑦‖2 

Navier–Stokes equation, which can be written as: 
 

 

𝒖(𝑥, 𝑦) ⋅ ∇𝒖(𝑥, 𝑦) + ∇𝑝(𝑥, 𝑦) − 
1 

 
 

𝑅𝑒 

 

Δ𝒖(𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ Ω, 

∇ ⋅ 𝒖(𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ Ω, (3) 
 

𝒖(𝑥, 𝑦) = (1,0) (𝑥, 𝑦) ∈ Γ1, 

𝒖(𝑥, 𝑦) = (0,0) (𝑥, 𝑦) ∈ Γ0, 
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where 𝒖(𝑥, 𝑦) and 𝑝(𝑥, 𝑦) are the velocity vector field and the scalar pressure field, 𝑅𝑒 is the Reynolds 

number of the flow, Ω ∈ [0, 1] ∗ [0, 1], and Γ1 denotes the top boundary of the two-dimensional square 

cavity, Γ0 denotes the other three sides. We conduct experiments 40 times using 2 sensors, 4 sensors and 6 

sensors at 𝑅𝑒 = 1000 to study the prediction performance. The maximum iteration number is set to 10000, 

and the number of residual points for the PDE loss term is set to 2601. As exemplified in the representative 

training experiment shown in Figure 2, when the training epochs increase, the results of OSPPINN (fixed) 

and OSPPINN (moving) gradually converge and the relative errors obtained after reaching the final training 

epoch are 7.099 × 10−2, 5.984 × 10−2 using 4 sensors. The vanilla PINN hardly learns the flow field 

features and is therefore not shown in Figure 2. The parameters of the three models are basically the same. 
 

    
 

 

 

 

 

 

 

 

(a) (b) (c) (d) 

Figure 2 Prediction of velocity magnitudes for the two-dimensional lid-driven cavity problem is shown for the 

following epochs: (a) epoch 2000, (b) epoch 4000, (c) epoch 8000, and (d) epoch 10000 at Re=1000 using 4 

sensors, the corresponding models from top to bottom are OSPPINN (fixed) and OSPPINN (moving). 
 

As shown in Figure 3 (a), when vanilla PINN uses sensor data to improve training accuracy, the relative 

errors are large and the results are unstable, which means that simply adding 𝐿𝑜𝑠𝑠𝑠𝑒𝑛𝑠𝑜𝑟 to the vanilla 

PINN’s loss function does not significantly reduce the optimizing complexity. The Encoder module enables 

to adaptively decide how to extract the latent features of the sensors for the subsequent PDE Decoder, which 

results in a smoother response of the OSPPINN to changes in sensor positions, leading to a more stable 

training process. As expected, increasing the number of sensors the training performance improves. The 

moving sensor strategy highly improves the field reconstruction capability of the network, in terms of mean 

and standard deviation of the error distribution, as seen in the comparison of L2 norm errors. The final 

sensor placements are shown in Figure 3 (b). The sensor locations are tuned in conjunction with the 

OSPPINN’s trainable parameters and are primarily distributed in areas with a large gradient of flow field 

values. Figure 4 shows the feature maps of the multi-head cross attention module during one of the training 

sessions, with the attention weights averaged across the heads. A general trend is observed, the attention 

weight for each sensor increases as the distance to the sensor decreases, even though the sensor points are 

not strictly centered in the feature maps. This phenomenon occurs primarily because each sensor has already 

integrated information from other sensors by this stage of training. 
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(a) 

 
 

(b) 
 

Figure 3 Prediction results of the two-dimensional lid-driven cavity problem (a) relative errors, (b) initial positions 

(red) and final position post-training (black) for the 4 sensors. 

 

Figure 4 The feature maps of the multi-head cross attention module. 

 

4. Conclusion 

 
In this study, we introduce OSPPINN that employs differentiable programming with attention modules to 

exploit sensor placement in order to improve field reconstruction fidelity. We evaluate the inference ability 

of OSPPINN in the cylinder flow problem. Repeated experiments have proven that our method is effective 

and stable. The Interpolation module can adaptively update the sensor value in real time according to the 

change of sensor position, the Encoder module and Decoder module can more effectively use sensor 

information to improve the accuracy of PDE solution. This study innovatively combines PINN with OSP 

for data assimilation. Future work will consider combining the model in this study with traditional data 

assimilation methods, such as EnKF method or adjoint method. 
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