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Abstract. Lean-premixed hydrogen combustion has recently drawn attention as an environmentally friendly 

approach for aircraft gas turbine engines. However, the flame flashback is one major challenge associated with 

premixed hydrogen combustion. Flashback poses a critical risk to the combustor system and the safe operation of 

gas turbine engines, making accurate prediction of flashback behavior essential. Our recent work investigated the 

flashback phenomena of a lean-premixed hydrogen-air jet flame in the low-swirl combustor (LSC) using Large 

Eddy Simulation (LES). The present study focuses on developing a predictive model for flashback phenomena 

based on the LES data. An encoder-decoder architecture based on Convolutional Neural Network (CNN) is 

adopted to construct the model. Since the LES results proved that the flashback in LSC is core flow flashback, 

which is controlled by the competition between inflow velocity and turbulent burning velocity, the velocity in the 

streamwise direction along with key physical quantities affecting turbulent burning velocity are selected as input 

features to the CNN architecture, while its output is the flashback propensity at the subsequent time step. The 

results show that the proposed model successfully predicts flashback behavior in the next time step using current 

flame surface data despite the flame shape changing continuously. 

 

1. Introduction 

Lean-premixed hydrogen combustion has recently drawn attention as an environmentally friendly 

approach for aircraft gas turbine engines. However, one major challenge associated with premixed 

hydrogen combustion is the flame flashback into the injector. The primary cause of flashback is the high 

burning velocity of hydrogen fuel. Additionally, combustion instability, frequently problematic in 

hydrogen combustion, can trigger flashback. Flashback poses a critical risk to the combustor system and 

the safe operation of gas turbine engines, making accurate prediction of flashback behavior essential. 

When designing combustors, flame behavior is analyzed using experiments and numerical 

simulations to verify combustor geometries and operating conditions that prevent flashback. However, 

experiments present safety challenges, and high-accuracy numerical simulations involve substantial 

computational costs, limiting their applicability. Recently, machine learning has attracted attention as a 

method to overcome these challenges. By learning complex nonlinear relationships from extensive 

experimental and numerical simulation data, machine learning is expected to enable rapid elucidation 

of flashback mechanisms and prediction of flame behavior. 

Several previous studies have applied machine learning to flashback phenomena. For example, 

Chen et al. [1] predicted future flame shapes from experimental data of flashback in scramjet combustors 

and compared the accuracy of multiple deep learning models. Similarly, Leask et al. [2] applied neural 

networks to experimental data of flashback in a swirling combustor, developing a predictive model for 

flashback occurrence. However, since flashback behavior varies significantly depending on fuel 

properties and combustor geometry [3], it is essential to verify the mechanisms and prediction methods 

for diverse combustion modes. 

More recently, Shoji et al. (Japan Aerospace Exploration Agency, JAXA) conducted experiments 

on flashback in a low-swirling hydrogen combustor [private communication], observing flashback 

originating from the burner center. Additionally, Kawai et al. [4] applied Large Eddy Simulation (LES) 

to the combustion field [5-8] investigated by Shoji et al., accurately reproducing the flashback behavior 

and obtaining high-resolution combustion field data. In this study, a machine learning model is proposed 

to predict flashback propensity using the LES data. 
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2. Methodology 
 

2.1. Data extraction 

High-resolution data obtained from LES [4] is utilized to predict flame behavior during flashback. 

Figure 1 shows the time variation of the flame surface obtained by the LES. Flame surface is defined as 

the surface where the mass fraction of H2O, which is the reaction progress variable used for analyzing 

premixed hydrogen-air combustion, equals 0.101. The premixed gas is ignited downstream of the 

injector exit and propagates upstream to reach the swirler. In this study, LES data is used from the time 

when the flame tip reaches the injector outlet to the time just before it reaches the swirler. The data 

extraction interval is set to 𝛥𝑡 = 0.1 ms, and 355 samples are used for machine learning. 80% of the 

LES data are used for training and the remaining 20% are used for validation. 
 
 

 
Figure 1: Temporal evolution of the flame surface (in red) and streamline. 

 

Figure 2 provides a schematic diagram illustrating the data extraction method. The three- 

dimensional distribution of physical quantities near the flame surface is projected onto the y–z plane to 

extract two-dimensional data. The physical quantities used as explanatory variable data include the x- 

component of flow velocity at 0, 0.5, 1.0, and 2.0 mm upstream of the flame surface, as well as the 

equivalence ratio, pressure, density, temperature, heat release rate, circumferential velocity, vorticity, 

y-, and z-components of flow velocity, and x-, y-, and z-components of the unit normal vector of the 

flame surface. The objective variable, the flashback propensity 𝛥𝑥𝑡 , is defined as follows. 
 

𝛥𝑥𝑡  = 𝑥𝑡+𝛥𝑡 − ̅𝑥̅̅𝑡 (1) 
𝑗𝑘 𝑗𝑘 

 

Where 𝑥 is a flame surface position in the mainstream direction, superscript denotes time, a subscript 

denotes position on the y-z plane, and ̅ is the spatial average. To eliminate the influence of the wall, 

data from the region around the axis of the combustor, i.e., |𝑦|, |𝑧| ≤ 9 mm, are extracted. 

To augment the dataset, each two-dimensional image is divided into four equally sized sub-images 

by splitting it along the vertical and horizontal axes. Each sub-image is then rotated by 0°, 90°, 180°, 

and 270°, respectively, resulting in a 16-fold increase in the number of images. Finally, standardization 

is applied. 
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Fig. 2: Schematic diagram of the data extraction method. 
 

2.2. Model architecture 

The model architecture is based on an encoder-decoder structure designed for image-to-image 

regression tasks. The architecture is inspired by the conventional U-net [9]. While standard U-net models 

are primarily designed for classification tasks, the output structure is modified to accommodate the 

regression objective of this study. Figure 3 shows a schematic diagram of the model architecture. The 

encoder extracts hierarchical features from the input, while the decoder reconstructs the output image 

from these features. Skip connections are incorporated between corresponding layers of the encoder and 

decoder to preserve spatial information and improve gradient flow. Both the input and output are two- 

dimensional images with a resolution of 128 × 128 pixels. The training conditions are summarized in 

table 1. 
 

 
Figure 3: Schematic diagram of model architecture. 

 
 

 Table 1: Training conditions.  
 

Library 

Loss function 

Activation function 

Optimizer 

Batch size 

Learning rate 

Epoch 

VRAM 

GPU 

PyTorch 

Mean Square Error (MSE) 

ReLU [10] 

Adam [11] 

8 

0.00001 

100 

24 GB, GDDR6 Memory 

NVIDIA Quadro RTX 6000 GPU 
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3. Results and discussion 

To evaluate the predictive accuracy of the flashback propensity, Figure 4 presents the spatial 

distribution of the ground truth and the predicted values obtained by the proposed model for the 

validation dataset. The results indicate that the proposed model largely reconstructs the flashback 

propensity, albeit with blurred boundary regions compared to the ground truth. Since this error may be 

attributed to the mean-square error loss function employed in this study, the accuracy may be further 

improved by modifying the loss function. To quantitatively assess the predictive accuracy of the 

proposed model, Figure 5 presents a scatter plot of the predicted value 𝛥𝑥  versus the ground truth 𝛥𝑥. 

The color map represents the joint probability density estimated via kernel density estimation. The 

coefficient of determination R2 = 0.80, confirms that the proposed model achieves high predictive 

accuracy in a quantitative sense. 

The time required to predict the flashback propensity after a small time interval 𝛥𝑡 is 972 seconds 

for LES, whereas it is only 0.93 seconds using the proposed model. This indicates that the prediction 

time using the machine learning model is approximately 1/1000th of that required for numerical 

simulations, leading to a significant reduction in computational cost. In summary, the proposed model 

successfully reproduces the flashback propensity obtained from LES while substantially reducing 

computational costs. 
 
 

 

(a) (b) 
 

Figure 4: Comparison of distributions of the flashback propensity 𝛥𝑥. (a) Ture. (b) Predicted. 
 

 

 
Figure 5: Scatter plot of predicted 𝛥𝑥  versus true 𝛥𝑥 values, colored by joint probability density. 
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4. Conclusions 

This study introduced a machine learning model designed to predict flashback propensity by 

analyzing the distribution of physical quantities around the flame surface, utilizing high-resolution data 

obtained from LES of a low-swirling hydrogen-air flame. The proposed model demonstrated the ability 

to effectively replicate flashback propensity after a brief period while offering a more cost-efficient 

alternative to LES. 
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