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Abstract. Measuring the stress field in complex fluid flows is essential for a wide range of applications. 
However, calculating the stress field in such fluids poses a significant challenge, as the constitutive equation that 

links the velocity field to the stress field remains elusive. To address this challenge, we have introduced a machine 

learning-based photoelasticity approach for stress field measurement. In this study, we reconstructed the three- 

dimensional stress field from two-dimensional images of flow birefringence, which directly reflects the stress 

distribution. The birefringence, characterized by optical retardation and fluid particle orientation, was 

experimentally captured using a polarization camera in a rectangular channel. This reconstruction is achieved 

through our originally developed 3D Physics-Informed Convolutional Encoder-Decoder (PICED) model—an 

Encoder-Decoder architecture that integrates a Convolutional Neural Network (CNN) with a Physics-Informed 

Neural Network (PINN), embedding physical equations within the loss function. The results demonstrate that our 

model achieves a degree of accuracy in predicting the three-dimensional stress field for interpolated data. These 

findings underscore the efficacy of incorporating physical equations into machine learning models, enabling more 

precise predictions compared to approaches relying solely on data error minimization. This model holds promise 

as a groundbreaking approach for three-dimensional stress field reconstruction. 

 
 

1. Introduction 

The fluid stress field is typically determined by applying the constitutive equation to the velocity 

distribution. Therefore, computing the stress field from the velocity field becomes a significant 

challenge for complex fluids where the constitutive equation is unclear. Blood serves as a prime example 

of such a complex fluid. Previous research has aimed to uncover the causes of cerebral aneurysms— 

bumps in blood vessels—by employing numerical simulations to analyze the stress fields of blood flow. 

However, the cause remains unresolved due to the limitations and incompleteness of the mathematical 

model(1). For the completely novel approach to measure the stress fields, Muto et al. achieved the 

groundbreaking visualization of the optical phase difference (retardation) ∆ [m] and its orientation φ 

[rad] induced by flow birefringence with the use of a polarization camera(2). Retardation refers to the 

deviation of light waves due to stress-induced strain and orientation indicates the direction of the 

principal stress. These values are denoted as 

Δ(i) = Cd (σ(i) – σ(i))2 + 4(σ(i))2, (1) 
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where the superscript (𝑖) denotes the 𝑖-th thin plate obtained by slicing the measurement object along 
the optical axis. Here, C represents the stress-optic coefficient, d is the thickness of a thin plate, and σxx, 
σxy, and σyy are the stress components in the Cartesian coordinate system(3). Although visualizing 

retardation and orientation facilitates stress field measurement, the data acquired by the polarization 
camera is an integrated value, computed through sophisticated matrix calculations across multiple plates. 
Furthermore, reconstructing stress fields involves tackling a complex nonlinear problem. 

This study focused on leveraging machine learning to address nonlinear challenges. In recent 

years, machine learning-driven 3D image reconstruction has not only advanced within the realm of fluid 
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dynamics but has also made notable progress across a wide range of other disciplines(4). This study aims 

to develop a machine-learning model capable of reconstructing a three-dimensional stress tensor field 

from two-dimensional integral images of retardation and orientation. Rather than relying on 

conventional machine learning approaches that overlook physical principles, this study leverages a 

Physics-Informed Neural Network (PINN), a neural network framework that incorporates governing 

physical equations(5). This paper presents the reconstruction of stress fields for rectangular pipe flows 

across varying aspect ratios using supervised learning. 

 

2. Methodology 

Figure 1a illustrates the experimental setup. Light from the source traverses a circular polarizer and the 

measurement object before reaching a high-speed polarization camera, enabling the measurement of the 

fluid’s birefringence. The measurements were conducted using two types of rectangular pipes with 

aspect ratios w/d = 1.0 and w/d = 3.0, as shown in figure 1a. A CNC-HS-FD solution (1.0 wt%), which 

is a photoelastic fluid, is flowed as the working fluid. Photoelastic fluids induce birefringence in the 

fluid, allowing measurement of retardation and orientation. Figure 1b presents the (i) retardation and (ii) 

orientation distributions obtained from the experiment. The flow rate, Q, was varied between 5 and 80 

mL/min, and a total of 19 different conditions were tested. 

To reduce computation time for machine learning, all images are resized to 64 × 64 pixels using 

the bicubic interpolation method. In addition, to minimize the influence of experimental errors, time 

averages were calculated by acquiring five images for each condition. In this study, five datasets with 

w/d = 1.0 and Q = 40 mL/min were designated as test data, while the remaining 90 datasets were utilized 

for training. The theoretical solutions of the Newtonian fluid laminar flow in a rectangular pipe were 

used as the stress distributions for the true values of the supervised learning. The stress tensor 

components in rectangular pipe flow adhere to the following equation: 

σxx  σxy  σxz 

σ = σyx  σyy  σyz  = 
σzx  σzy  σzz 

−p σxy σxz 

σxy  −p 0 

σxz 0 −p 

 
. 

(3) 

 

where p is atmospheric pressure. Thus, σxy and σxz, which vary between datasets, were used in the 
analysis. Based on this, machine learning was conducted using the two-dimensional distributions of 
retardation and orientation as input, and the three-dimensional stress tensor distribution as output. 

The 3D Physics-Informed Convolutional Encoder-Decoder (PICED) model, shown in figure 2, 

was employed as the machine learning model. This model is a three-dimensional image generation 

architecture capable of reconstructing a three-dimensional stress field from two-dimensional input 

images of retardation and orientation(6). Furthermore, by incorporating physical equations into the loss 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (a) Illustration of the experimental setup and (b) representative images showcasing 

(i) retardation and (ii) orientation captured from the experiment (𝑄 = 40 mL/min). 
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Figure 2 3D Physics-Informed Convolutional Encoder-Decoder (PICED) as the machine learning model. 
 

function, the model can make predictions that account for underlying physical phenomena. In this study, 
the Cauchy equation and the continuity equation were employed as the governing physical equations. 

The velocity in the x-direction, ux, is necessary for the physical equations, and thus, the velocity is also 
incorporated into the output. Note that the true values of the velocity distribution are derived from the 

theoretical solution. Let Ldata represent the data error, calculated using the mean squared error (MSE), 

LN the residual derived from the Cauchy equation, and LC the residual from the continuity equation. The 

overall loss function, Ltotal, is defined by the following equation: 
 

Ltotal = Ldata + ß1LN + ß2LC, 
(4) 

 

where λ1 and λ2 are fitting parameters, and λ1 = 10-4 and λ2 = 1.0. Furthermore, Ldata, LN and LC can be 
expressed by the following equations: 
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where N is the number of data points in one image, the superscript “p” is the predicted value, and “a” is 

the true value. The central difference method was employed for the differential calculations. The 

computations were carried out in parallel (data parallel) using 4 GPUs. 

 

3. Results & Discussion 

Figure 3 presents the results of reconstructing the theoretical solution (Theory), representing the true 

values, alongside the stress and velocity fields predicted by PICED. 

The reconstruction outcomes using only MSE as the loss function (CNN) are also displayed for 

comparison. 

These results demonstrate that CNN provides more accurate predictions for both stress and velocity 
fields. 

Specifically, the mean absolute errors (MAEs) for PICED and CNN when compared to the theoretical 

solution are 0.105 and 0.849 for σxy, 0.127 and 0.087 for σxz, and 4.93 × 10-2 and 1.55 × 10-2 for ux, 
respectively, highlighting the superior accuracy of CNN. On the other hand, all methods successfully 
predicted the stress field with a reasonable degree of accuracy, suggesting that these models can 
effectively reconstruct the three-dimensional stress field for rectangular pipe flows across different 
aspect ratios. To further evaluate the accuracy of the machine learning models, figure 4 presents the 
predicted values of stress and velocity along each axis for the center line (Lines 1-4) of each cross- 
section, as shown in figure 3, for both PICED and CNN. Numerical simulation results for Q = 30 and 
50 mL/min, which have stress and velocity values close to the test data for Q = 40 mL/min, are also 

included in the same figure. 

Figure 4a demonstrates that both PICED and CNN can predict σxy with high accuracy around y = 5-30 

pixels, while PICED yields predictions closer to the theoretical values for y = 30-60 pixels. However, 

near the inlet and outlet (i.e., y = 1-4, 61-64 pixels), PICED predictions become large outliers, whereas 

CNN predictions are closer to the theoretical values. This discrepancy is likely attributed to PICED’s 

use of the central difference method for solving the physical equations, leading to difficulties near the 
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boundary of the computational domain. The reason CNN appears more accurate in the results shown in 

figure 3 and in the MAE calculation is that PICED’s predictions near the boundary were less precise. 

This suggests that incorporating boundary conditions is crucial to improving prediction accuracy near 

the domain boundaries. A similar trend is observed for σxz with respect to the position in the z-direction 

(figure 4b). Despite introducing certain errors, CNN successfully predicted the interpolated stress values 

(and velocity values) not present in the training set with a reasonable degree of accuracy. 

On the other hand, as shown in figure 4c, PICED demonstrates less accuracy for the velocity values in 

relation to the position along the y-direction. This inconsistency is likely due to the error introduced by 

the continuity equation and the mismatch with the correct image. However, as illustrated in figure 4d, 

along the x-direction, which corresponds to the flow direction, PICED successfully mitigates abrupt 

changes between consecutive points and learns to better satisfy the continuity equation. Thus, it is 

essential to reconsider the fitting parameter λ2 to reduce the error between the correct image and the 

predicted image in the y-direction while still satisfying the continuity equation along the flow direction. 

In addition, to explore the influence of the physical equations, we examined the values of LN and LC 

from Eq. (6). For PICED, LN = 1.89 × 10-2 and LC = 1.85 × 10-6, while for CNN, LN = 0.484 and LC = 
1.26 × 10-5. These results suggest that PICED more accurately predicts the physical equations than CNN. 
The results above indicate that machine learning can successfully predict the stress distribution of 

interpolated data with varying aspect ratios using two-dimensional images integrated with retardation 

and orientation. Furthermore, the findings suggest that PICED is a machine-learning model capable of 

incorporating physical equations. 
 
 

Figure 3 Stress and velocity distributions: theoretical values, prediction values of PICED and CNN. 
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Figure 4 Stress and velocity values for each axis. 

 

4. Conclusion 

This study aims to develop a machine learning model capable of reconstructing a three-dimensional 

stress field from a two-dimensional integrated image of retardation and orientation captured by a high- 

speed polarization camera. In this paper, machine learning was implemented using a 3D Physics- 

Informed Convolutional Encoder-Decoder (PICED) and CNN to analyze a rectangular pipe channel 

with varying aspect ratios. As a result, the stress distribution of interpolated data was successfully 

predicted with notable accuracy. Predicting channels with different aspect ratios enables the estimation 

of values along the integration direction, providing key insights for extending predictions to more 

complex channel geometries. As for PICED, it learned to satisfy the Cauchy equation and the continuity 

equation, suggesting that it is a model that can take the physical equations into account better than CNN. 

However, PICED currently demonstrates lower accuracy than CNN near walls and in certain regions, 

and we aim to refine the model to enhance its precision in future work. Moving forward, we strive to 

predict three-dimensional flow by utilizing images captured from multiple directions. Building on this 

plan, our ultimate goal is to reconstruct three-dimensional fluid stress fields in complex geometries 

through machine learning. 
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