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Abstract 

 
Whilst weather prediction is a BigData problem with many relevant samples over the observed historical period, 
climate projection is a SmallData problem with relatively few samples. Standard machine learning methods, 
making minimal physical assumptions, have demonstrated recent success in weather forecasting. Typically, 
functional forms are adopted that capture many types of nonlinearity with many parameters, hence requiring many 
samples. However, in climate applications there are few relevant samples due to slow time scales, and boundary 
conditions with trends associated with increasing greenhouse gas emissions. Here we instead make maximal 
physical assumptions by only allowing the nonlinearity supported by the physics, hence requiring fewer 
parameters. We develop a reduced-order model (ROM) of the global atmosphere by projecting the equations of 
motion onto a set of proper orthogonal decomposition (POD) modes. This transforms a system of partial 
differential equations dependent upon time and space, into a system of ordinary differential equations dependent 
upon time and POD mode index. The POD modes are calculated for the atmospheric velocity and temperature 
fields sourced from the Climate Analysis Forecast Ensemble data assimilation system. This data comprises of 96 
three-dimensional model realisations of the Earth from 1960 to 2020, which have been corrected on the basis of 
real-world observations. The ROM coefficients are calculated via an optimisation procedure that minimises the 
forecast error of each POD mode. Our ROM reproduces the large-scale atmospheric variability at a fraction of the 
computational cost. 
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Introduction 

 
To navigate a transition to a lower carbon economy stakeholders require assessments of the physical climate risk for 
many future economic and hence carbon emissions scenarios. General circulation models (GCMs) undertake the 
simulations of the climate that provide the necessary data to make such assessments. However, due to their 
computational cost, it is only practical to simulate a small subset of the possible future outcomes. 

 
One solution is to develop data-driven, rapid and cheap reduced order models (ROMs) of the climate. Here we do so 
for the global atmosphere. Possible approaches range from black-box methods [1], to the more physically 
constrained ones adopted here. We perform a Galerkin projection, where the partial differential equations (PDEs) 
governing the global atmosphere are projected onto proper orthogonal decomposition (POD) bases. This transforms 
the PDEs evolving the flow in time and three-dimensions of space, into a set of ordinary differential equations 
(ODEs) governing the contribution of each POD mode in time. This reduces the computational expense immensely. 
The model coefficients of the ROM are calculated using a regression approach [2]. This technique was adopted in 
[3] to develop the first ever POD ROM of the global oceans, which captured seasonal and inter-annual climate 
variability. This approach was applied to the global atmosphere in [4], which additionally captured mean trends due 
to the contribution of climate change, but with only a dynamically evolving velocity field. 

 
Here we form a fully coupled POD ROM of the global atmosphere with dynamical fluctuating velocity and 
temperature fields. The POD ROM is developed using data from the Climate Analysis Forecast Ensemble reanalysis 
[5], denoted by CAFE-60. In CAFE-60 real-world observations of the Earth system are exploited to continually 
correct an ensemble of 96 simultaneous GCM simulations. It provides three-dimensional (3D) fields from 1960 to 
2020 for each of the 96 ensemble members. In the following section we characterise the trends, seasonality and 
multi-year variability in CAFE-60. The POD bases are then presented. The derivation of the POD ROM, and 
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calculation of the model coefficients, are then outlined. Finally, the POD ROM output is validated against the 
underlying data. 

Flow Field Characterisation 
 

In CAFE-60 the atmosphere, ocean, land, sea-ice and bio-geo-chemical components are all simulated in a coupled 

manner. For the present POD ROM we only require the fields from the atmosphere. This output is provided on 21 

vertical levels. The structured grid has a resolution of 2∘ in latitudinal direction and 2.5∘ in longitude. The time step 

size in the atmospheric component of the GCM was 30 minutes. The output used here, however, is monthly 

averaged. The boundary conditions have periodic and aperiodic components, which are respectively associated with 

orbit of the Earth around the Sun, and the growing greenhouse gas concentrations. These forcings result in the 

observed climate trends, seasonality, and inter-annual variability. 
 

To characterise the flow we first define the state vector q=(u,T), comprising of the temperature (T), and horizontal 

velocity vector u=(u,v), with eastward zonal (u), and northward meridional (v) velocity components. Note, we 

require only the horizontal velocity components because when using the hydrostatic approximation in the global 

atmosphere, one does not evolve the vertical velocity, but rather diagnoses it the from the horizontal components. 

The flow of an individual ensemble member or the ensemble averaged flow can be decomposed according to 

q(x, t) = q¯ Δ(x, t) + ~q(x ,  t) + q′(x, t) #(1) 

where q̄ Δ(x, t) is the trend, and 
~q (x ,  t) is the seasonal part with a 1-year phase period of zero time mean. The 

q′(x, t) term, represents the residual inter-annual fluctuations, which is characterised using POD in the following 

section. The trend is modelled akin to an approach common in the climate sciences, referred to as pattern scaling [6], 

according to 

q  ̄Δ(x, t) = q¯ PI(x) + [T
G(t) − TG(t PI)] 

 Δq¯ 
(x) . #(2) 

 

The pre-industrial state q¯ PI(x), is averaged over a period from 1963 to t PI = 1970. TG(t) is the centred 10-year 

Δ q̄  
rolling mean of the surface averaged temperature. The gradient 

ΔTG 
, quantifies how the 3D state variables change 

with TG 
at each point in space. The average deviations from the trend per month are represented according to 

~q(x,  t) = ∑Dec ~q ϑ(x)  dϑ(t) #(3)where dϑ(t) is equal to 1 within month , and zero otherwise. The term 

~qϑ (x) 
ϑ=Jan 

represents the phase averaged deviation about the trend, for each of the calendar months ϑ ∈ 
[January,…,December]  [Jan,…,Dec]  [1,…,12]. 

 

Figure 1 characterises the components in equation (1). The pre-industrial temperature and zonal velocity fields are 

illustrated in figures 1(d) and figure 1(h), respectively. The black line in figure 1(a) is the monthly globally-averaged 

surface temperature. It clearly illustrates a growing trend, the seasonality and inter-annual variability. The red line in 

this plot is a 10-year moving average (TG(t)). Figure 1(b) illustrates the detrended timeseries, where the red line in 

figure 1(a) is subtracting away from the black one. The anomalies (or fluctuations) about the detrended timeseries 

are calculated by subtracting away its phase average. The anomalous timeseries is shown in figure 1(c). The mean 

response of the temperature field with respect to TG(t) is illustrated in figure 1(e), indicating an increase in 

temperature globally. Figure 1(i) illustrates the response of the zonal velocity field, and indicates a shift of southern 

hemisphere eastward jet toward the south pole. The standard deviation of the seasonal cycle is illustrated for the 

temperature and zonal velocity fields in figures 1(f) and 1(j), respectively. The standard deviation of the associated 

anomalies are illustrated in figures 1(g) and 1(k). For both variables the standard deviation of the seasonal cycle is 

significantly larger than that of the anomalies. This indicates that the difference from one season to the next, is larger 

than the difference from one year to the next for a given season. However, the ability to forecast the anomalous 

fields is essential in order to make predictions more skilful than simply prescribing the average seasonal state. The 

anomalous component at each point in space are decomposed into a series of POD modes in the following section, 

and will be simulated in the POD ROM to follow. 
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Proper Orthogonal Decomposition 
 

The computationally efficient snapshot POD method [7] is used to calculate two separate PODs, one for the 

anomalous 3D two-component velocity field, and another for the anomalous 3D scalar temperature field given by 
 

 
Figure 1 Characterisation of the CAFE-60 reanalysis at the lowest vertical level. Time series of globally averaged surface temperature: (a) 

monthly and annual; (b) detrended monthly; (c) detrended and deseasonalised. Surface temperature field: (d) pre-industrial mean; (e) climate 

change gradient; (f) standard deviation of seasons; and (g) standard deviation of anomalies. Surface zonal velocity field: (h) pre-industrial mean; 

(i) climate change gradient; (j) standard deviation of seasons; and (k) standard deviation of anomalies. 

u′(x, t) = ∑Nu 

T′(x, t) = ∑NT 

𝓤(n)(x) a(n)(t)#(4) 

T (n)(x) b(n)(t)#(5) 

where NU and NT are the numbers of velocity and temporal POD modes retained in their respective reconstructions. 

The temporal POD velocity, a(n)(t), and temperature, b(n)(t), modes have units of ms-1 and oC respectively. They 

have zero mean, and are scaled to represent the variance of each mode. The spatial POD temperature modes, 

T (n)(x), are unitless with orthogonality properties of ⟨T (n)(x), T (m)(x)⟩ = δnm , where δnm is the Kronecker 

delta function. The angled brackets denote an inner product integrating the product of the spatial modes over the 

domain volume. Likewise, the spatial POD velocity modes, 𝓤(n)(x) ≡ (𝒰(n)(x), V (n)(x)) , are unitless with 

orthogonality properties of ⟨𝓤(n)(x), 𝓤(m)(x)⟩  = δnm, where this inner product integrates the dot product of 

these vector quantities. 
 

Figure 2 illustrates the velocity POD basis in the left column and the temperature POD in the right. In the top row, 

the black line illustrates the percentage of variance per mode, with the shaded green representing the cumulative 

percentage variance. For both POD spectra, the first 10 modes capture near 70% of the total anomalous variability. 

The first temporal mode is illustrated in the second row. Recall CAFE-60 contains 96 separate realisations of the 

Earth every month. The grey shaded region illustrates the range of POD mode contributions across all of the 

ensemble members, and the solid black line the ensemble averaged contribution. The third row of plots illustrate the 
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first spatial modes are at the lowest vertical level. For the velocity decomposition we illustrate the meridional 

velocity component, noting that there is another pattern for the zonal velocity component. The temperature mode 

possesses large scale features reminiscent of the El Niño and La Niña cycle in the tropical Pacific. As the mode 

indices increases, the variability of each mode decreases, dominant temporal frequencies increase, and the dominant 

spatial features move further away from the equator. The POD modes are the bases upon which the POD ROM are 

projected. 
 

 
Figure 2 POD mode bases. Velocity: (a) POD spectra; (c) first temporal mode; and (e) meridional component of the first spatial mode at the 

surface.. Temperature: (b) POD spectra; (d) first temporal mode; and (f) first spatial mode at the surface. 

 

Derivation of the Reduced Order Model 
 

The governing equations required for the POD ROM derivation, constitutes the conservation of mass (continuity), 

equation of state (ideal gas law), conservation of momentum, and conservation of energy. For the large scale 

atmosphere, one can make the hydrostatic assumption, where the pressure gradient and the buoyancy terms in the 

vertical momentum equation dominate. The vertical velocity component is hence not prognostic, but rather 

diagnosed via the continuity equation. Therefore, one only requires a POD of the horizontal velocity components. 

After some manipulation, one can show that the equations of motion can be written compactly as 

 Du 

Dt 
= 𝓝(u, u) + 𝓛(u) + 𝓢(T)#(8) 

 DT 

Dt 
= ℳ(u, T) + J(x, t) #(9) 

where 𝓝(u, u) is a nonlinear function of the velocity field, 𝓛(u) a linear function of the velocity field, and 

𝓢(T ) a linear function of the temperature field, each returning vector quantities. ℳ(u, T ) is a nonlinear function 

of the velocity and temperature fields, which returns a scalar quantity. These functions have their own analytical 
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expressions, but their specific form is not required moving forward. These functions are not included here for 

brevity, but refer to [3] for details on this derivation for the iso-morphic problem in the global ocean. 
 

The POD ROM is then derived by first substituting decompositions of the prognostic variables into (8) and (9). The 

decompositions are given by substituting the forms of the trend, seasonal and anomalous components into (1) giving 

u(x, t) = ū  PI(x) + [T
G(t) − TG(t PI)] 

 Δu¯ 
(x) + ∑Dec u~ϑ(x) dϑ(t) + ∑Nu 𝓤(n)(x) a(n)(t) , and#(6) 

 
¯ PI 

 
 G G PI 

ΔTG 

 ΔT  

ϑ=Jan 

Dec ~ ϑ 

n=1 

 ϑ NT 

 
 (n) 

 
(n) 

T(x, t) =  T (x) + [T (t) − T (t )] 
ΔTG 

(x) + ∑
ϑ=Jan

 T (x) d (t) + ∑
n=1  

𝒯 (x) b (t) . #(7) 

One then projects the equations of motion onto the appropriate POD modes. The evolution of the velocity field is 

derived by symbolically applying the velocity inner product between the momentum equation in (8) and the n-th 

velocity spatial mode, 𝓤(n)(x). Expanding the terms and applying orthogonality properties, results in the ODEs 

ȧ(n)(t) = ∑
Dec

 [ Dϑ ḋ
ϑ

(t) + Bϑ TG(t)dϑ(t) + Cϑ dϑ(t) + 
 

Dec Fϑϑ′dϑ(t)dϑ′(t) + Nu  
Lϑ

 a(m)(t)dϑ(t)] 

ϑ=Jan 
n
 

˙ G G 2 

n 

 
Nu Nu 

n 

 (m) 

 

 (k) 

∑ϑ′=Jan  
n
 

NT 

 

 
(m) 

∑m=1 

Nu 

nm 

 (m) G 

+ An T (t) + Hn [T (t)] + ∑
m=1 

∑
k =1 

Qnmka (t)a (t) + ∑
m=1 

Znmb (t) + ∑
m=1 

Ynma (t)T (t)#(10) 

where the dot superscript denotes the time derivative. We produce the ODEs for the temperature field using an 

analogous approach. We apply the temperature inner product between the energy equation in (9) and the n-th 

temperature spatial mode, 𝒯(n)(x), then apply the orthogonality properties to give 

ḃ
(n)

(t) = ∑
Dec

 [ Ď ϑ 
ḋ
ϑ

(t) + B̌
ϑ  

TG(t)dϑ(t) + Č ϑ 
dϑ(t) + ∑

Dec
 F̌ ϑϑ′dϑ(t)dϑ′(t) + ∑

NT
 

Ľ ϑ b(m)(t)dϑ(t)] 

ϑ=Jan 
n n

 
n 

ϑ′=Jan  
n
 m=1  

nm
 

Dec + NT  
Ž ϑ a(m)(t)dϑ(t) + Nu  

W̌
 a(m)(t)TG(t) 

∑ϑ=Jan  ∑m=1  
nm ∑m=1 

nm
 

 ̌ ˙ G  ̌ G 2 Nu Nu   ̌ (m) (k) NT  ̌ (m) G 

+ An T (t) + Hn [T (t)] + ∑
m=1 

∑
k=1 

Q
nmk

b (t)a (t) + ∑
m=1 

Ynmb (t)T (t)#(11) 

All the terms without explicit time dependencies in the above ODEs are time invariant coefficients. All these 

coefficients also have analytical expressions, and can in principle be calculated from the known spatial modes, phase 

averages, and climate change gradient fields. However, here we instead use the structure of the ODEs to identify the 

appropriate input and output factors to solve regression problem, Y = βX + ϵ, where β is a vector containing the 

POD ROM coefficients, and the residuals. As per the left-hand-side of the ODEs, is a vector containing the time 

derivatives of the POD temporal modes. The input factors contained in the matrix  are the groups of time varying 

terms on the right-hand-side. We solve for β using ridge regression, penalising for the squared distance to the data, 

and the square of the model coefficients. 

Temporal Integration 
 

In the POD ROM to follow we retained the first 10 velocity and temperature modes. We then determine the 

coefficients using samples taken from all 96 members of the CAFE-60 ensemble from 1970 to 2020. The temporal 

modes are also temporally interpolated, decreasing the time step size by a factor of 30, for numerical stability of the 

POD ROM. This results in a total of 1.728 million available samples. A fourth order Runge-Kutta scheme marches 

forward the coupled ODEs in (10) and (11), using the calculated POD ROM coefficients, with the globally averaged 

surface temperature prescribed. The ODEs are additionally perturbed with stochastic forcing representative of . The 

initial conditions of the POD ROM take on the values of the temporal velocity POD modes at the first time instant. 

Figure 3(a) compares the first velocity temporal POD mode (black line) to the evolution of this mode as simulated 

by the POD ROM (red line). The variability is well represented, as are the magnitudes of the extreme values and 

dominant frequencies. The same is true for the first temperature mode in figure 3(d). As expected, the time series are 

out of phase. This is an illustration of the butterfly effect, due to the error growth in nonlinear dynamical systems. 
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The only way to ensure specific events align is to run the POD ROM within a data assimilation system. A fairer 

relevant comparison is based on the statistics. Figure 3(b) and 3(c), illustrates that the variance and one-month 

autocorrelations of the velocity modes in the dynamically simulated POD ROM matches those in the underlying 

data. There are some differences, but the POD ROM broadly captures the variability and two-time statistics of the 

system within the resolved modes. The same can also be said for the variability and autocorrelations of the 

temperature modes respectively illustrated in figure 3(e) and 3(f). 
 

 
Figure 3 Validation of POD ROM output with underlying temporal POD modes. Comparison of velocity temporal POD modes based on the: (a) 

time series; (b) POD energy spectra; and (c) one-month autocorrelation. Comparison of temperature temporal POD modes based on the: (d) 

time series; (e) POD energy spectra; and (f) one-month autocorrelation. 

Concluding Remarks 

 
A reduced-order dynamical system was developed for the global atmosphere over the period from 1970 to 2020, as 
represented within the CAFE-60 reanalysis. The seasonal, anomalous climate variability and climate change trend 
components were explicitly decomposed. The trend response and seasonal cycles of the prognostic variables were 
calculated and sampled from the underlying data. The evolution of the anomalous component was governed by a 
POD ROM, derived by projecting the atmospheric equations of motion onto velocity and temperature POD mode 
bases. The coefficients in the POD ROM were calculated via a ridge regression approach, where the input and 
output factors were justified by the equations of motion. The POD ROM reproduced the statistics of the large-scale 
structures at a fraction of the computational cost required to numerical simulate such a flow. 
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