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Abstract 

1. Problem Setup

The method of Physics-Informed Neural Networks (PINNs) has emerged as a powerful alternative to 
traditional numerical methods for solving partial differential equations, offering advantages such as 
mesh-free computation and efficient handling of complex boundary conditions. In a previous study, we 
performed computational investigations of the advection-diffusion-Langmuir adsorption (ADLA) 
process in Poiseuille flows in the 2-D plane with the finite difference method (FDM) [1]. Combined 
with theoretical analysis, an identification of dominant mass transfer processes was made under laminar 
flow conditions. Using PINNs in the following study, we revisited this ADLA process with a machine 
learning method [2]. The results indicated that PINNs can offer an efficient and accurate technique 
compared to FDM for solving ADLA equations. 

This study applies PINNs to solve the ADLA equations in an oscillatory flow with the nondimensional 
form,  

where , , and  are the normalized bulk concentration, the normalized surface concentration of the 
adsorbates, and the normalized time, respectively. In Eq.(2) that governs the adsorption process,  is 
the normalized concentration of free adsorbates in the bulk solution adjacent to the channel surface. 
Note that the oscillatory flow can be regarded as the superposition of a steady Poiseuille flow plus an 
additional flow oscillating around zero velocity [3]. Thus, there exist two Peclet numbers  and 
that represent the ratio of convection to diffusion in the Poiseuille flow and the additional oscillatory 
components, respectively. Specifically, the Poiseuille flow is determined by a parabolic velocity 
distribution  with prime amplitude . The oscillatory component is controlled by the 
oscillation amplitude  and frequency coefficients  and  in .   

Let  

∂c*
∂ t* = λ2 ∂2c*

∂x*2 + ∂2c*

∂ y*2 − λ[Pe1 y*(1 − y*) + Pe2
1

α2 f*(α, Sc, y*, t*)] ∂c*
∂x* ,      (1)

ϵ ∂c*
∂ y* = ∂ η

∂ t* = ϵDa[c*s (1 − η) − 1
K0

η],    (2)
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ST = sin(2α2 Sc t*), C T = cos(2α2  Sc t*),
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where  is the Schmidt 

number, defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity, with  
representing the ratio of the transient inertial force to the viscous force physically. Then, 

 can be written in a brief form as: 

 

Figure 1 shows the schematic of the processes with geometric settings. 

 

Fig. 1 Schematic and notation of the advection-diffusion-Langmuir adsorption processes in a two-
dimensional oscillatory flow between two parallel planes. Adsorbates (molecules and particles) of 
concentration  at  are introduced from the inlet of the 2-D channel, i.e., , into the 
flow. When adsorbates are advected along with the fluids into the reactive surface area starting at , 
the concentration of free adsorbates adjacent to the surface decreases due to the adsorption at the 
surface. Then the bulk adsorbates spontaneously diffuse toward the surface in response to the 
concentration gradient across the flow. In general, the coupling of these three processes of advection, 
diffusion, and adsorption modifies the concentration distribution of adsorbates in the flow.  

2    Methods 

The fourth term on the right-hand side of  Eq. (1), which governs the mode of oscillation,  makes the 
flows much more complicated. Our numerical tests indicate that the general PINNs method fails to 
handle these situations well. Here, we use the PirateNets, a novel adaptive residual connection 
architecture that is designed to facilitate stable and efficient training of deep PINNs models, allowing 
the networks to be initialized as shallow networks that progressively deepen during training [4].  

We compare the results trained by PirateNets and simulated by the FDM we developed in Ref. [1] for 
Eqs.(1) and (2) of oscillatory flow conditions. The parameters for the simulations are listed in Tab. 1. It 
exhibits typical diffusion-dominant adsorption behavior in Poiseuille flows when . We use a 
uniform mesh in FDM to facilitate the implementation of the numerical algorithm and conduct the mesh 
independence tests to ensure the computational accuracy in FDM.  

SN = sin(
α(y* − 0.5)

0.5 ),         SH = sinh(
α(y* − 0.5)

0.5 ),

CS = cos(
α(y* − 0.5)

0.5 ),          CH = cosh(
α(y* − 0.5)

0.5 ), Sc

α

f*(α, Sc, y*, t*)

f*(α, Sc, y*, t*) = 1
cos(2α) + cosh(2α) [cos(2α) ⋅ SN + cosh(2α) ⋅ ST

+ sin(α) ⋅ sinh(α) ⋅ CS ⋅ CT ⋅ CH − 2sin(α) ⋅ SN ⋅ ST ⋅ SH 
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Tab. 1: Parameters used in PirateNets and FDM simulations for ADLA processes in oscillatory flows. 

Let the computational domain be . By denoting the reactive 
surface length as , the length before  as  and after as , the total length  at the bottom of the 
computational domain (at axis ) can be partitioned equally into three parts with 

, where , in the current case.   

We implement two types of boundary conditions (B.C.) at the inlet of domain : 

 

At the reactive surface, Eq.(2) can be embedded as a boundary condition in Eq. (1), and we have 

 

The initial condition of  is set as  for . Other boundary conditions for  are as follows: 

 

 

3. Results 

Since the flow is oscillatory, the initial distribution of  concentration  is put at the entry of the 
adsorption surface, i.e.,  

 

The aims of setting this initial condition for  are twofold: (1) to investigate the effect of the boundary 
conditions at the inlet on the changing of concentration  under steady oscillatory flows, and (2) to 
know if the PirateNets can capture the transient state of  and  as well as the FDM does.      

3.1   Dirichlet B.C. 

Under the Dirichlet boundary condition, the concentration continuously enters the flow channel at the 
inlet. We use the parameters listed in Tab. 1 for the demonstrations of  and  trained by PirateNets. 
Figure 2 shows its temporal comparisons with the FDM. 

The results demonstrate that PINN training efficiently identifies the depletion zone in diffusion-
dominated scenarios, subsequently enabling the prediction of the adsorption rate of adsorbates, denoted 

α ϵ λ Sc Da
30.0 30.0 0.01 0.1 0.0333 16667 10.0 1.0

K0Pe1 Pe2

Ω = [0,L′ ] × [0,H ] = [0,30] × [0,1]
L L l l L′ 

y* = 0
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Ω

(I )    DirichletB . C . :    c* = 1,       if  x* = 0 and y* ∈ [0,H ];

(II )  NeumannB . C . : ∂c*
∂x* = 0,    if  x* = 0 and y* ∈ [0,H ] .

∂c*
∂ y* = Da[c*s (1 − η) − 1
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, at every moment. The concentration field generated by PINN training matches well with that 
computed by FDM, especially in the adsorption area we are interested in.  The global maximum 
absolute error of  often occurs near the front edge and the end of the adsorption interval , for which 
it is less than 20%.  

Fig. 2 Comparisons of  and  with temporal evolution for predictions by PINNs and computions by 
FDM. Dirichlet B.C. is applied with the parameters listed in Tab. 1. 

3.2    Neumann B.C. 

For the Neumann boundary condition, the concentration field  is conserved and determined by the 
initial  distribution, as described in Eq.(7). We still use the parameters listed in Tab. 1 for the 
demonstrations of  and  trained by PirateNets. Figure 3 shows its temporal comparisons with the 
FDM. Compared to Dirichlet B.C., the concentration field  with Nuemann B.C. is lower due to the 
absence of concentration input at the inlet ( ). Under the Nuemann B.C., the PINN method has 
likewise captured the depletion zone precisely during the time evolution process of . The PINN 
results with Nuemann B.C. show lower absolute errors than that of FDM, with maximum values not 
exceeding 11%. 

Fig. 3 Comparisons of  and  with temporal evolution for predictions by PINNs and computions by 
FDM. Neumnann B.C. is used with the parameters listed in Tab. 1. 

4. Conclusion 

By using the stable and training-efficient physics-informed neural networks PirateNets, we solved the 
advection-diffusion-Langmuir adsorption equations in two-dimensional oscillatory flows with two types 
of boundary conditions. Considering two kinds of boundary conditions, detailed numerical comparison 
in the case study shows that this kind of neural networks is highly suitable for such complex flow 
problems compared to the finite difference method we have developed in the case of diffusion.  
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This work demonstrates the ability of PINNs to model ADLA processes under dynamic flow conditions, 
providing an efficient framework for addressing challenges in chemical engineering, biomedical 
applications, and beyond. 
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