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Abstract
1. Problem Setup

The method of Physics-Informed Neural Networks (PINNs) has emerged as a powerful alternative to
traditional numerical methods for solving partial differential equations, offering advantages such as
mesh-free computation and efficient handling of complex boundary conditions. In a previous study, we
performed computational investigations of the advection-diffusion-Langmuir adsorption (ADLA)
process in Poiseuille flows in the 2-D plane with the finite difference method (FDM) [1]. Combined
with theoretical analysis, an identification of dominant mass transfer processes was made under laminar
flow conditions. Using PINNSs in the following study, we revisited this ADLA process with a machine
learning method [2]. The results indicated that PINNs can offer an efficient and accurate technique
compared to FDM for solving ADLA equations.

This study applies PINNs to solve the ADLA equations in an oscillatory flow with the nondimensional
form,
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where ¢*, 1, and t* are the normalized bulk concentration, the normalized surface concentration of the
adsorbates, and the normalized time, respectively. In Eq.(2) that governs the adsorption process, ¢;* is
the normalized concentration of free adsorbates in the bulk solution adjacent to the channel surface.
Note that the oscillatory flow can be regarded as the superposition of a steady Poiseuille flow plus an
additional flow oscillating around zero velocity [3]. Thus, there exist two Peclet numbers Pe; and Pe,
that represent the ratio of convection to diffusion in the Poiseuille flow and the additional oscillatory
components, respectively. Specifically, the Poiseuille flow is determined by a parabolic velocity
distribution y*(1 — y*) with prime amplitude Pe;. The oscillatory component is controlled by the

oscillation amplitude Pe,/ a? and frequency coefficients & and Sc in f*(a, Sc, y*, ).

Let

ST = sin(2a2 Se z*), CT = cos(2a2 Se z*),



Proceedings of the 1st international Symposium on Al and Fluid Mechanics
Paper No S11 A6

*—0.5 *—0.5
SN = sin M , SH = sinh a(y—) ,
0.5 0.5
*—0.5 *—0.5
CS = cos % , CH = cosh % ,where Sc is the Schmidt

number, defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity, with o
representing the ratio of the transient inertial force to the viscous force physically. Then,
f*(a, Sc, y*, t*) can be written in a brief form as:

F*(a, Sc, y*, t*) =—— 1 __ [cos(a)- SN + cosh(Qa) - ST

cos(2a) + cosh(2a)
+ sin(a) - sinh(a) - CS - CT- CH — 2sin(a) - SN - ST-SH )
— 2cos(a) - cosh(a)(CS - CH- ST+ CT-SN - SH)].

Figure 1 shows the schematic of the processes with geometric settings.
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Fig. 1 Schematic and notation of the advection-diffusion-Langmuir adsorption processes in a two-
dimensional oscillatory flow between two parallel planes. Adsorbates (molecules and particles) of
concentration ¢* = 1 at x* = 0 are introduced from the inlet of the 2-D channel, i.e., x* = 0, into the
flow. When adsorbates are advected along with the fluids into the reactive surface area starting at O,,
the concentration of free adsorbates adjacent to the surface decreases due to the adsorption at the
surface. Then the bulk adsorbates spontancously diffuse toward the surface in response to the
concentration gradient across the flow. In general, the coupling of these three processes of advection,
diffusion, and adsorption modifies the concentration distribution of adsorbates in the flow.

2 Methods

The fourth term on the right-hand side of Eq. (1), which governs the mode of oscillation, makes the
flows much more complicated. Our numerical tests indicate that the general PINNs method fails to
handle these situations well. Here, we use the PirateNets, a novel adaptive residual connection
architecture that is designed to facilitate stable and efficient training of deep PINNs models, allowing
the networks to be initialized as shallow networks that progressively deepen during training [4].

We compare the results trained by PirateNets and simulated by the FDM we developed in Ref. [1] for
Egs.(1) and (2) of oscillatory flow conditions. The parameters for the simulations are listed in Tab. 1. It
exhibits typical diffusion-dominant adsorption behavior in Poiseuille flows when Pe, = 0. We use a
uniform mesh in FDM to facilitate the implementation of the numerical algorithm and conduct the mesh
independence tests to ensure the computational accuracy in FDM.
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Tab. 1: Parameters used in PirateNets and FDM simulations for ADLA processes in oscillatory flows.

P.. Pes o € A Sc Da Kn
30.0 30.0 0.01 0.1 0.0333 16667 10.0 1.0

Let the computational domain be Q = [0,L"] X [0,H ] = [0,30] X [0,1]. By denoting the reactive
surface length as L, the length before L as [ and after as [, the total length L’ at the bottom of the
computational domain (at axis y* =0) can be partitioned equally into three parts with
L'=1+L +r,wherel = L =r = 10, in the current case.

We implement two types of boundary conditions (B.C.) at the inlet of domain €:

(I) DirichletB.C.: c¢* =1, if x*=0andy* € [0,H];

(IT) NeumannB.C.: 25 =0, if x*=0andy* €[0,H].

At the reactive surface, Eq.(2) can be embedded as a boundary condition in Eq. (1), and we have

g;:=D“[C§‘(1"7)‘KLO'7]’ if y* =0 and x*€[l,I+L]. 4

The initial condition of 77 is set as 7 = 0 for #* = (. Other boundary conditions for ¢ * are as follows:

v =H and x*e[0,L],
g;: =0, ifq y* =0 and x*e€[0,), )
y* =0 and x*e(+L,L1,
0, ifx'=L and y*e[0.H]. ©
3. Results

Since the flow is oscillatory, the initial distribution of concentration ¢* is put at the entry of the
adsorption surface, i.e.,

1, if x*€[0/) and r*=0,
c* = )
0, if x*€[l,L] and r*=0.

The aims of setting this initial condition for ¢* are twofold: (1) to investigate the effect of the boundary
conditions at the inlet on the changing of concentration ¢* under steady oscillatory flows, and (2) to
know if the PirateNets can capture the transient state of ¢ * and 7 as well as the FDM does.

3.1 Dirichlet B.C.
Under the Dirichlet boundary condition, the concentration continuously enters the flow channel at the
inlet. We use the parameters listed in Tab. 1 for the demonstrations of ¢* and # trained by PirateNets.

Figure 2 shows its temporal comparisons with the FDM.

The results demonstrate that PINN training efficiently identifies the depletion zone in diffusion-
dominated scenarios, subsequently enabling the prediction of the adsorption rate of adsorbates, denoted
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d#n/0dt, at every moment. The concentration field generated by PINN training matches well with that
computed by FDM, especially in the adsorption area we are interested in. The global maximum
absolute error of ¢* often occurs near the front edge and the end of the adsorption interval L, for which
it is less than 20%.
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Fig. 2 Comparisons of ¢* and # with temporal evolution for predictions by PINNs and computions by
FDM. Dirichlet B.C. is applied with the parameters listed in Tab. 1.

3.2 Neumann B.C.

For the Neumann boundary condition, the concentration field c* is conserved and determined by the
initial ¢* distribution, as described in Eq.(7). We still use the parameters listed in Tab. 1 for the
demonstrations of ¢* and # trained by PirateNets. Figure 3 shows its temporal comparisons with the
FDM. Compared to Dirichlet B.C., the concentration field ¢* with Nuemann B.C. is lower due to the
absence of concentration input at the inlet (x* = 0). Under the Nuemann B.C., the PINN method has
likewise captured the depletion zone precisely during the time evolution process of c¢*. The PINN
results with Nuemann B.C. show lower absolute errors than that of FDM, with maximum values not
exceeding 11%.

oM £=64 FOM 10
PR /Ednplmim zone e
0 0.1 02 03 04 05 06 07 05 0o o 0 0 02 0 04 0 06 o 0.8 09 10
ABS Enror ABS Error
o

——FDM — DM

04 - - PINN 04 i - - PINN
02 e 02
00 a0

n 2

v T v T T
0 5 n 15 2 2 w0 0 5 0 15
(a) (b)

Fig. 3 Comparisons of ¢* and # with temporal evolution for predictions by PINNs and computions by
FDM. Neumnann B.C. is used with the parameters listed in Tab. 1.

4. Conclusion

By using the stable and training-efficient physics-informed neural networks PirateNets, we solved the
advection-diffusion-Langmuir adsorption equations in two-dimensional oscillatory flows with two types
of boundary conditions. Considering two kinds of boundary conditions, detailed numerical comparison
in the case study shows that this kind of neural networks is highly suitable for such complex flow
problems compared to the finite difference method we have developed in the case of diffusion.
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This work demonstrates the ability of PINNs to model ADLA processes under dynamic flow conditions,
providing an efficient framework for addressing challenges in chemical engineering, biomedical
applications, and beyond.
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